Loading…
PSR B0943+10: low-frequency study of subpulse periodicity in the Bright mode with LOFAR
We use broadband sensitive LOFAR observations in the 25–80 MHz frequency range to study the single-pulse emission properties of the mode-switching pulsar B0943+10. We review the derivation of magnetospheric geometry, originally based on low-frequency radio data, and show that the geometry is less st...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2018-08, Vol.616, p.A119 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-6c16ae1f2fd7c61c68e970adf3c274772d8a37875566704c5fe72c0f38d1477d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-6c16ae1f2fd7c61c68e970adf3c274772d8a37875566704c5fe72c0f38d1477d3 |
container_end_page | |
container_issue | |
container_start_page | A119 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 616 |
creator | Bilous, A. V. |
description | We use broadband sensitive LOFAR observations in the 25–80 MHz frequency range to study the single-pulse emission properties of the mode-switching pulsar B0943+10. We review the derivation of magnetospheric geometry, originally based on low-frequency radio data, and show that the geometry is less strongly constrained than previously thought. This may be used to help explain the large fractional amplitudes of the observed thermal X-ray pulsations from the polar cap, which contradicted the almost aligned rotator model of PSR B0943+10. We analyse the properties of drifting subpulses in the Bright mode and report on the short-scale (minutes) variations of the drift period. We searched for the periodic amplitude modulation of drifting subpulses, which is a vital argument for constraining several important system parameters: the degree of aliasing, the orientation of the line-of-sight vector with respect to magnetic and spin axes, the angular velocity of the carousel, and thus, the gradient of the accelerating potential in the polar gap. The periodic amplitude modulation was not detected, indicating that it may be a rare or narrow-band phenomenon. Based on our non-detection and review of the available literature, we chose to leave the aliasing order unconstrained and derived the number of sparks under different assumptions about the aliasing order and geometry angles. Contrary to the previous findings, we did not find a large (of the order of 10%) gradual variation of the separation between subpulses throughout Bright mode. We speculate that this large variation of subpulse separation may be due to the incorrect accounting for the curvature of the line of sight within the on-pulse window. Finally, we report on the frequency-dependent drift phase delay, which is similar to the delay reported previously for PSR B0809+74. We provide a quantitative explanation of the observed frequency-dependent drift phase delay within the carousel model. |
doi_str_mv | 10.1051/0004-6361/201732106 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114680306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114680306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-6c16ae1f2fd7c61c68e970adf3c274772d8a37875566704c5fe72c0f38d1477d3</originalsourceid><addsrcrecordid>eNo9kFFPwjAQxxujiYh-Al-a-Ggm13Zrh29ARE2mIKj41syulSKw2XZBvr0jGJ4ul_v_7i4_hC4J3BBISAcA4ogzTjoUiGCUAD9CLRIzGoGI-TFqHRKn6Mz7RdNSkrIWmo2nE9yHbsyuCdziZbmJjNM_tV6rLfahLra4NNjXn1W99BpX2tmysMqGLbZrHOYa9539mge8KguNNzbMcTYa9ibn6MTkDXHxX9vobXj3OniIstH946CXRYpxCBFXhOeaGGoKoThRPNVdAXlhmKIiFoIWac5EKpKEcwGxSowWVIFhaUGaccHa6Gq_t3Jl87UPclHWbt2clJSQmKfAgDcptk8pV3rvtJGVs6vcbSUBuTMod37kzo88GGyoaE9ZH_TvAcndt-SCiUSmMJPTj_dx9vz0IgfsDxqtb6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114680306</pqid></control><display><type>article</type><title>PSR B0943+10: low-frequency study of subpulse periodicity in the Bright mode with LOFAR</title><source>EZB Electronic Journals Library</source><creator>Bilous, A. V.</creator><creatorcontrib>Bilous, A. V.</creatorcontrib><description>We use broadband sensitive LOFAR observations in the 25–80 MHz frequency range to study the single-pulse emission properties of the mode-switching pulsar B0943+10. We review the derivation of magnetospheric geometry, originally based on low-frequency radio data, and show that the geometry is less strongly constrained than previously thought. This may be used to help explain the large fractional amplitudes of the observed thermal X-ray pulsations from the polar cap, which contradicted the almost aligned rotator model of PSR B0943+10. We analyse the properties of drifting subpulses in the Bright mode and report on the short-scale (minutes) variations of the drift period. We searched for the periodic amplitude modulation of drifting subpulses, which is a vital argument for constraining several important system parameters: the degree of aliasing, the orientation of the line-of-sight vector with respect to magnetic and spin axes, the angular velocity of the carousel, and thus, the gradient of the accelerating potential in the polar gap. The periodic amplitude modulation was not detected, indicating that it may be a rare or narrow-band phenomenon. Based on our non-detection and review of the available literature, we chose to leave the aliasing order unconstrained and derived the number of sparks under different assumptions about the aliasing order and geometry angles. Contrary to the previous findings, we did not find a large (of the order of 10%) gradual variation of the separation between subpulses throughout Bright mode. We speculate that this large variation of subpulse separation may be due to the incorrect accounting for the curvature of the line of sight within the on-pulse window. Finally, we report on the frequency-dependent drift phase delay, which is similar to the delay reported previously for PSR B0809+74. We provide a quantitative explanation of the observed frequency-dependent drift phase delay within the carousel model.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201732106</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Aliasing ; Amplitude modulation ; Amplitudes ; Angles (geometry) ; Angular velocity ; Broadband ; Curvature ; Delay ; Drift ; Emission analysis ; Geometry ; Literature reviews ; LOFAR ; Magnetospheres ; Periodic variations ; Polar caps ; Pulsars ; pulsars: individual: B0943+10 ; Separation ; telescopes</subject><ispartof>Astronomy and astrophysics (Berlin), 2018-08, Vol.616, p.A119</ispartof><rights>Copyright EDP Sciences Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-6c16ae1f2fd7c61c68e970adf3c274772d8a37875566704c5fe72c0f38d1477d3</citedby><cites>FETCH-LOGICAL-c360t-6c16ae1f2fd7c61c68e970adf3c274772d8a37875566704c5fe72c0f38d1477d3</cites><orcidid>0000-0002-7177-6987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Bilous, A. V.</creatorcontrib><title>PSR B0943+10: low-frequency study of subpulse periodicity in the Bright mode with LOFAR</title><title>Astronomy and astrophysics (Berlin)</title><description>We use broadband sensitive LOFAR observations in the 25–80 MHz frequency range to study the single-pulse emission properties of the mode-switching pulsar B0943+10. We review the derivation of magnetospheric geometry, originally based on low-frequency radio data, and show that the geometry is less strongly constrained than previously thought. This may be used to help explain the large fractional amplitudes of the observed thermal X-ray pulsations from the polar cap, which contradicted the almost aligned rotator model of PSR B0943+10. We analyse the properties of drifting subpulses in the Bright mode and report on the short-scale (minutes) variations of the drift period. We searched for the periodic amplitude modulation of drifting subpulses, which is a vital argument for constraining several important system parameters: the degree of aliasing, the orientation of the line-of-sight vector with respect to magnetic and spin axes, the angular velocity of the carousel, and thus, the gradient of the accelerating potential in the polar gap. The periodic amplitude modulation was not detected, indicating that it may be a rare or narrow-band phenomenon. Based on our non-detection and review of the available literature, we chose to leave the aliasing order unconstrained and derived the number of sparks under different assumptions about the aliasing order and geometry angles. Contrary to the previous findings, we did not find a large (of the order of 10%) gradual variation of the separation between subpulses throughout Bright mode. We speculate that this large variation of subpulse separation may be due to the incorrect accounting for the curvature of the line of sight within the on-pulse window. Finally, we report on the frequency-dependent drift phase delay, which is similar to the delay reported previously for PSR B0809+74. We provide a quantitative explanation of the observed frequency-dependent drift phase delay within the carousel model.</description><subject>Aliasing</subject><subject>Amplitude modulation</subject><subject>Amplitudes</subject><subject>Angles (geometry)</subject><subject>Angular velocity</subject><subject>Broadband</subject><subject>Curvature</subject><subject>Delay</subject><subject>Drift</subject><subject>Emission analysis</subject><subject>Geometry</subject><subject>Literature reviews</subject><subject>LOFAR</subject><subject>Magnetospheres</subject><subject>Periodic variations</subject><subject>Polar caps</subject><subject>Pulsars</subject><subject>pulsars: individual: B0943+10</subject><subject>Separation</subject><subject>telescopes</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kFFPwjAQxxujiYh-Al-a-Ggm13Zrh29ARE2mIKj41syulSKw2XZBvr0jGJ4ul_v_7i4_hC4J3BBISAcA4ogzTjoUiGCUAD9CLRIzGoGI-TFqHRKn6Mz7RdNSkrIWmo2nE9yHbsyuCdziZbmJjNM_tV6rLfahLra4NNjXn1W99BpX2tmysMqGLbZrHOYa9539mge8KguNNzbMcTYa9ibn6MTkDXHxX9vobXj3OniIstH946CXRYpxCBFXhOeaGGoKoThRPNVdAXlhmKIiFoIWac5EKpKEcwGxSowWVIFhaUGaccHa6Gq_t3Jl87UPclHWbt2clJSQmKfAgDcptk8pV3rvtJGVs6vcbSUBuTMod37kzo88GGyoaE9ZH_TvAcndt-SCiUSmMJPTj_dx9vz0IgfsDxqtb6g</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Bilous, A. V.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7177-6987</orcidid></search><sort><creationdate>20180801</creationdate><title>PSR B0943+10: low-frequency study of subpulse periodicity in the Bright mode with LOFAR</title><author>Bilous, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-6c16ae1f2fd7c61c68e970adf3c274772d8a37875566704c5fe72c0f38d1477d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aliasing</topic><topic>Amplitude modulation</topic><topic>Amplitudes</topic><topic>Angles (geometry)</topic><topic>Angular velocity</topic><topic>Broadband</topic><topic>Curvature</topic><topic>Delay</topic><topic>Drift</topic><topic>Emission analysis</topic><topic>Geometry</topic><topic>Literature reviews</topic><topic>LOFAR</topic><topic>Magnetospheres</topic><topic>Periodic variations</topic><topic>Polar caps</topic><topic>Pulsars</topic><topic>pulsars: individual: B0943+10</topic><topic>Separation</topic><topic>telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilous, A. V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilous, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSR B0943+10: low-frequency study of subpulse periodicity in the Bright mode with LOFAR</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>616</volume><spage>A119</spage><pages>A119-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>We use broadband sensitive LOFAR observations in the 25–80 MHz frequency range to study the single-pulse emission properties of the mode-switching pulsar B0943+10. We review the derivation of magnetospheric geometry, originally based on low-frequency radio data, and show that the geometry is less strongly constrained than previously thought. This may be used to help explain the large fractional amplitudes of the observed thermal X-ray pulsations from the polar cap, which contradicted the almost aligned rotator model of PSR B0943+10. We analyse the properties of drifting subpulses in the Bright mode and report on the short-scale (minutes) variations of the drift period. We searched for the periodic amplitude modulation of drifting subpulses, which is a vital argument for constraining several important system parameters: the degree of aliasing, the orientation of the line-of-sight vector with respect to magnetic and spin axes, the angular velocity of the carousel, and thus, the gradient of the accelerating potential in the polar gap. The periodic amplitude modulation was not detected, indicating that it may be a rare or narrow-band phenomenon. Based on our non-detection and review of the available literature, we chose to leave the aliasing order unconstrained and derived the number of sparks under different assumptions about the aliasing order and geometry angles. Contrary to the previous findings, we did not find a large (of the order of 10%) gradual variation of the separation between subpulses throughout Bright mode. We speculate that this large variation of subpulse separation may be due to the incorrect accounting for the curvature of the line of sight within the on-pulse window. Finally, we report on the frequency-dependent drift phase delay, which is similar to the delay reported previously for PSR B0809+74. We provide a quantitative explanation of the observed frequency-dependent drift phase delay within the carousel model.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201732106</doi><orcidid>https://orcid.org/0000-0002-7177-6987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2018-08, Vol.616, p.A119 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_journals_2114680306 |
source | EZB Electronic Journals Library |
subjects | Aliasing Amplitude modulation Amplitudes Angles (geometry) Angular velocity Broadband Curvature Delay Drift Emission analysis Geometry Literature reviews LOFAR Magnetospheres Periodic variations Polar caps Pulsars pulsars: individual: B0943+10 Separation telescopes |
title | PSR B0943+10: low-frequency study of subpulse periodicity in the Bright mode with LOFAR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSR%20B0943+10:%20low-frequency%20study%20of%20subpulse%20periodicity%20in%20the%20Bright%20mode%20with%20LOFAR&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Bilous,%20A.%20V.&rft.date=2018-08-01&rft.volume=616&rft.spage=A119&rft.pages=A119-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201732106&rft_dat=%3Cproquest_cross%3E2114680306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-6c16ae1f2fd7c61c68e970adf3c274772d8a37875566704c5fe72c0f38d1477d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2114680306&rft_id=info:pmid/&rfr_iscdi=true |