Loading…

New formulation of the discrete element method

A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform st...

Full description

Saved in:
Bibliographic Details
Main Authors: Rojek, Jerzy, Zubelewicz, Aleksander, Madan, Nikhil, Nosewicz, Szymon
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1922
creator Rojek, Jerzy
Zubelewicz, Aleksander
Madan, Nikhil
Nosewicz, Szymon
description A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.
doi_str_mv 10.1063/1.5019043
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2115806461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115806461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwZvQOpPP9iiLrsKiFwVvIW0Ttkvb1DRV_PdWd8Gbp7k8M_PyEnKJkCFIdoOZACyAsyOyQCEwVRLlMVkAFDylnL2dkrNx3AHQQql8QbIn-5k4H7qpNbHxfeJdErc2qZuxCjbaxLa2s31MOhu3vj4nJ860o704zCV5vb97WT2km-f14-p2k1as4DGlEqQqlJDGcJM7Q11JmaoFL60TSlbU1GUlHZZ5zssK56A8B-AzrFGiALYkV_u7Q_Dvkx2j3vkp9PNLTWeeg-QSZ3W9V2PVxN_4eghNZ8KX_vBBoz50oYfa_YcR9E95fwvsGxwRXwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2115806461</pqid></control><display><type>conference_proceeding</type><title>New formulation of the discrete element method</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Rojek, Jerzy ; Zubelewicz, Aleksander ; Madan, Nikhil ; Nosewicz, Szymon</creator><contributor>Latalski, Jarosław ; Bec, Jarosław ; Warminski, Jerzy ; Kuczma, Mieczyslaw ; Podgorski, Jerzy ; Burczynski, Tadeusz ; Borowa, Ewa Blazik</contributor><creatorcontrib>Rojek, Jerzy ; Zubelewicz, Aleksander ; Madan, Nikhil ; Nosewicz, Szymon ; Latalski, Jarosław ; Bec, Jarosław ; Warminski, Jerzy ; Kuczma, Mieczyslaw ; Podgorski, Jerzy ; Burczynski, Tadeusz ; Borowa, Ewa Blazik</creatorcontrib><description>A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5019043</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Compression tests ; Computer simulation ; Constitutive relationships ; Contact force ; Contact stresses ; Deformation mechanisms ; Discrete element method ; Elastic properties ; Nondestructive testing ; Particle interactions ; Shape recognition ; Stress concentration</subject><ispartof>AIP conference proceedings, 2018, Vol.1922 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Latalski, Jarosław</contributor><contributor>Bec, Jarosław</contributor><contributor>Warminski, Jerzy</contributor><contributor>Kuczma, Mieczyslaw</contributor><contributor>Podgorski, Jerzy</contributor><contributor>Burczynski, Tadeusz</contributor><contributor>Borowa, Ewa Blazik</contributor><creatorcontrib>Rojek, Jerzy</creatorcontrib><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><creatorcontrib>Madan, Nikhil</creatorcontrib><creatorcontrib>Nosewicz, Szymon</creatorcontrib><title>New formulation of the discrete element method</title><title>AIP conference proceedings</title><description>A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.</description><subject>Compression tests</subject><subject>Computer simulation</subject><subject>Constitutive relationships</subject><subject>Contact force</subject><subject>Contact stresses</subject><subject>Deformation mechanisms</subject><subject>Discrete element method</subject><subject>Elastic properties</subject><subject>Nondestructive testing</subject><subject>Particle interactions</subject><subject>Shape recognition</subject><subject>Stress concentration</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwZvQOpPP9iiLrsKiFwVvIW0Ttkvb1DRV_PdWd8Gbp7k8M_PyEnKJkCFIdoOZACyAsyOyQCEwVRLlMVkAFDylnL2dkrNx3AHQQql8QbIn-5k4H7qpNbHxfeJdErc2qZuxCjbaxLa2s31MOhu3vj4nJ860o704zCV5vb97WT2km-f14-p2k1as4DGlEqQqlJDGcJM7Q11JmaoFL60TSlbU1GUlHZZ5zssK56A8B-AzrFGiALYkV_u7Q_Dvkx2j3vkp9PNLTWeeg-QSZ3W9V2PVxN_4eghNZ8KX_vBBoz50oYfa_YcR9E95fwvsGxwRXwY</recordid><startdate>20180105</startdate><enddate>20180105</enddate><creator>Rojek, Jerzy</creator><creator>Zubelewicz, Aleksander</creator><creator>Madan, Nikhil</creator><creator>Nosewicz, Szymon</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180105</creationdate><title>New formulation of the discrete element method</title><author>Rojek, Jerzy ; Zubelewicz, Aleksander ; Madan, Nikhil ; Nosewicz, Szymon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Compression tests</topic><topic>Computer simulation</topic><topic>Constitutive relationships</topic><topic>Contact force</topic><topic>Contact stresses</topic><topic>Deformation mechanisms</topic><topic>Discrete element method</topic><topic>Elastic properties</topic><topic>Nondestructive testing</topic><topic>Particle interactions</topic><topic>Shape recognition</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojek, Jerzy</creatorcontrib><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><creatorcontrib>Madan, Nikhil</creatorcontrib><creatorcontrib>Nosewicz, Szymon</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojek, Jerzy</au><au>Zubelewicz, Aleksander</au><au>Madan, Nikhil</au><au>Nosewicz, Szymon</au><au>Latalski, Jarosław</au><au>Bec, Jarosław</au><au>Warminski, Jerzy</au><au>Kuczma, Mieczyslaw</au><au>Podgorski, Jerzy</au><au>Burczynski, Tadeusz</au><au>Borowa, Ewa Blazik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New formulation of the discrete element method</atitle><btitle>AIP conference proceedings</btitle><date>2018-01-05</date><risdate>2018</risdate><volume>1922</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5019043</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1922 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2115806461
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Compression tests
Computer simulation
Constitutive relationships
Contact force
Contact stresses
Deformation mechanisms
Discrete element method
Elastic properties
Nondestructive testing
Particle interactions
Shape recognition
Stress concentration
title New formulation of the discrete element method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20formulation%20of%20the%20discrete%20element%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Rojek,%20Jerzy&rft.date=2018-01-05&rft.volume=1922&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5019043&rft_dat=%3Cproquest_scita%3E2115806461%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115806461&rft_id=info:pmid/&rfr_iscdi=true