Loading…
New formulation of the discrete element method
A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform st...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1922 |
creator | Rojek, Jerzy Zubelewicz, Aleksander Madan, Nikhil Nosewicz, Szymon |
description | A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM. |
doi_str_mv | 10.1063/1.5019043 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2115806461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115806461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwZvQOpPP9iiLrsKiFwVvIW0Ttkvb1DRV_PdWd8Gbp7k8M_PyEnKJkCFIdoOZACyAsyOyQCEwVRLlMVkAFDylnL2dkrNx3AHQQql8QbIn-5k4H7qpNbHxfeJdErc2qZuxCjbaxLa2s31MOhu3vj4nJ860o704zCV5vb97WT2km-f14-p2k1as4DGlEqQqlJDGcJM7Q11JmaoFL60TSlbU1GUlHZZ5zssK56A8B-AzrFGiALYkV_u7Q_Dvkx2j3vkp9PNLTWeeg-QSZ3W9V2PVxN_4eghNZ8KX_vBBoz50oYfa_YcR9E95fwvsGxwRXwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2115806461</pqid></control><display><type>conference_proceeding</type><title>New formulation of the discrete element method</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Rojek, Jerzy ; Zubelewicz, Aleksander ; Madan, Nikhil ; Nosewicz, Szymon</creator><contributor>Latalski, Jarosław ; Bec, Jarosław ; Warminski, Jerzy ; Kuczma, Mieczyslaw ; Podgorski, Jerzy ; Burczynski, Tadeusz ; Borowa, Ewa Blazik</contributor><creatorcontrib>Rojek, Jerzy ; Zubelewicz, Aleksander ; Madan, Nikhil ; Nosewicz, Szymon ; Latalski, Jarosław ; Bec, Jarosław ; Warminski, Jerzy ; Kuczma, Mieczyslaw ; Podgorski, Jerzy ; Burczynski, Tadeusz ; Borowa, Ewa Blazik</creatorcontrib><description>A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5019043</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Compression tests ; Computer simulation ; Constitutive relationships ; Contact force ; Contact stresses ; Deformation mechanisms ; Discrete element method ; Elastic properties ; Nondestructive testing ; Particle interactions ; Shape recognition ; Stress concentration</subject><ispartof>AIP conference proceedings, 2018, Vol.1922 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Latalski, Jarosław</contributor><contributor>Bec, Jarosław</contributor><contributor>Warminski, Jerzy</contributor><contributor>Kuczma, Mieczyslaw</contributor><contributor>Podgorski, Jerzy</contributor><contributor>Burczynski, Tadeusz</contributor><contributor>Borowa, Ewa Blazik</contributor><creatorcontrib>Rojek, Jerzy</creatorcontrib><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><creatorcontrib>Madan, Nikhil</creatorcontrib><creatorcontrib>Nosewicz, Szymon</creatorcontrib><title>New formulation of the discrete element method</title><title>AIP conference proceedings</title><description>A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.</description><subject>Compression tests</subject><subject>Computer simulation</subject><subject>Constitutive relationships</subject><subject>Contact force</subject><subject>Contact stresses</subject><subject>Deformation mechanisms</subject><subject>Discrete element method</subject><subject>Elastic properties</subject><subject>Nondestructive testing</subject><subject>Particle interactions</subject><subject>Shape recognition</subject><subject>Stress concentration</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwZvQOpPP9iiLrsKiFwVvIW0Ttkvb1DRV_PdWd8Gbp7k8M_PyEnKJkCFIdoOZACyAsyOyQCEwVRLlMVkAFDylnL2dkrNx3AHQQql8QbIn-5k4H7qpNbHxfeJdErc2qZuxCjbaxLa2s31MOhu3vj4nJ860o704zCV5vb97WT2km-f14-p2k1as4DGlEqQqlJDGcJM7Q11JmaoFL60TSlbU1GUlHZZ5zssK56A8B-AzrFGiALYkV_u7Q_Dvkx2j3vkp9PNLTWeeg-QSZ3W9V2PVxN_4eghNZ8KX_vBBoz50oYfa_YcR9E95fwvsGxwRXwY</recordid><startdate>20180105</startdate><enddate>20180105</enddate><creator>Rojek, Jerzy</creator><creator>Zubelewicz, Aleksander</creator><creator>Madan, Nikhil</creator><creator>Nosewicz, Szymon</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180105</creationdate><title>New formulation of the discrete element method</title><author>Rojek, Jerzy ; Zubelewicz, Aleksander ; Madan, Nikhil ; Nosewicz, Szymon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Compression tests</topic><topic>Computer simulation</topic><topic>Constitutive relationships</topic><topic>Contact force</topic><topic>Contact stresses</topic><topic>Deformation mechanisms</topic><topic>Discrete element method</topic><topic>Elastic properties</topic><topic>Nondestructive testing</topic><topic>Particle interactions</topic><topic>Shape recognition</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojek, Jerzy</creatorcontrib><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><creatorcontrib>Madan, Nikhil</creatorcontrib><creatorcontrib>Nosewicz, Szymon</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojek, Jerzy</au><au>Zubelewicz, Aleksander</au><au>Madan, Nikhil</au><au>Nosewicz, Szymon</au><au>Latalski, Jarosław</au><au>Bec, Jarosław</au><au>Warminski, Jerzy</au><au>Kuczma, Mieczyslaw</au><au>Podgorski, Jerzy</au><au>Burczynski, Tadeusz</au><au>Borowa, Ewa Blazik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New formulation of the discrete element method</atitle><btitle>AIP conference proceedings</btitle><date>2018-01-05</date><risdate>2018</risdate><volume>1922</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5019043</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.1922 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2115806461 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Compression tests Computer simulation Constitutive relationships Contact force Contact stresses Deformation mechanisms Discrete element method Elastic properties Nondestructive testing Particle interactions Shape recognition Stress concentration |
title | New formulation of the discrete element method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20formulation%20of%20the%20discrete%20element%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Rojek,%20Jerzy&rft.date=2018-01-05&rft.volume=1922&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5019043&rft_dat=%3Cproquest_scita%3E2115806461%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-260679756aa4a8fa2fb237d54bef576c2adbc6f1b884bc115548004fa2d161503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115806461&rft_id=info:pmid/&rfr_iscdi=true |