Loading…

Large hh-lh splitting energy for InAs/AlSb/GaSb based N-structure photodetectors

We investigate the band properties of InAs/AlSb/GaSb (N-structure) and InAs/GaSb material based type II superlattice (T2SL) photodedectors. The superlattice empirical pseudopotential method is used to define band-structures such as the bandgap and heavy hole-light hole (hh-lh) splitting energies in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2018-01, Vol.123 (2)
Main Authors: Akel, K., Hostut, M., Tansel, T., Ergun, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-bf257e1533c604aa8aae086e196068a994daf60ed065d8d76d86030bf97d7ec93
cites cdi_FETCH-LOGICAL-c327t-bf257e1533c604aa8aae086e196068a994daf60ed065d8d76d86030bf97d7ec93
container_end_page
container_issue 2
container_start_page
container_title Journal of applied physics
container_volume 123
creator Akel, K.
Hostut, M.
Tansel, T.
Ergun, Y.
description We investigate the band properties of InAs/AlSb/GaSb (N-structure) and InAs/GaSb material based type II superlattice (T2SL) photodedectors. The superlattice empirical pseudopotential method is used to define band-structures such as the bandgap and heavy hole-light hole (hh-lh) splitting energies in the mid-wavelength infrared range (MWIR) and long wavelength range (LWIR). The calculations are carried out on the variation of AlSb/GaSb layer thickness for (InAs)10.5/(AlSb)x/(GaSb)9-x and the variation of InAs layer thickness for (InAs)x/(AlSb)3/(GaSb)6 T2SL structures at 77 K. For the same bandgap energy of 229 meV (5.4 μm in wavelength), hh-lh splitting energy is calculated as 194 meV for the (InAs)7.5/(AlSb)3/(GaSb)6 structure compared to the (InAs)10.5/(GaSb)9 structure with hh-lh splitting energy of 91 meV within the MWIR. Long wavelength performance of InAs/AlSb/GaSb structure shows superior electronic properties over the standard InAs/GaSb T2SL structure with larger hh-lh splitting energy which is larger than the bandgap energy. The best result is obtained for (InAs)17/(AlSb)3/(GaSb)6 with the minimum bandgap of 128 meV with hh-lh splitting energy of 194 meV, which is important for suppressing the Auger recombination process. These values are very promising for a photodetector design in both MWIR and LWIR in high temperature applications.
doi_str_mv 10.1063/1.4999632
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2115808098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115808098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-bf257e1533c604aa8aae086e196068a994daf60ed065d8d76d86030bf97d7ec93</originalsourceid><addsrcrecordid>eNqd0MFLwzAYBfAgCs7pwf8g4Emh25dmTZPjGDoHQ4XpOaTN17WjNjVJhf33Tjbw7uldfrwHj5BbBhMGgk_ZZKaUEjw9IyMGUiV5lsE5GQGkLJEqV5fkKoQdAGOSqxF5Wxu_RVrXSVvT0LdNjE23pdih3-5p5TxddfMwnbebYro0m4IWJqClL0mIfijj4JH2tYvOYsQyOh-uyUVl2oA3pxyTj6fH98Vzsn5drhbzdVLyNI9JUaVZjizjvBQwM0YagyAFMiVASKPUzJpKAFoQmZU2F1YK4FBUKrc5loqPyd2xt_fua8AQ9c4NvjtM6pSxTIIEJQ_q_qhK70LwWOneN5_G7zUD_XuYZvp02ME-HG0om2hi47r_4W_n_6DubcV_AJ54eJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115808098</pqid></control><display><type>article</type><title>Large hh-lh splitting energy for InAs/AlSb/GaSb based N-structure photodetectors</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Akel, K. ; Hostut, M. ; Tansel, T. ; Ergun, Y.</creator><creatorcontrib>Akel, K. ; Hostut, M. ; Tansel, T. ; Ergun, Y.</creatorcontrib><description>We investigate the band properties of InAs/AlSb/GaSb (N-structure) and InAs/GaSb material based type II superlattice (T2SL) photodedectors. The superlattice empirical pseudopotential method is used to define band-structures such as the bandgap and heavy hole-light hole (hh-lh) splitting energies in the mid-wavelength infrared range (MWIR) and long wavelength range (LWIR). The calculations are carried out on the variation of AlSb/GaSb layer thickness for (InAs)10.5/(AlSb)x/(GaSb)9-x and the variation of InAs layer thickness for (InAs)x/(AlSb)3/(GaSb)6 T2SL structures at 77 K. For the same bandgap energy of 229 meV (5.4 μm in wavelength), hh-lh splitting energy is calculated as 194 meV for the (InAs)7.5/(AlSb)3/(GaSb)6 structure compared to the (InAs)10.5/(GaSb)9 structure with hh-lh splitting energy of 91 meV within the MWIR. Long wavelength performance of InAs/AlSb/GaSb structure shows superior electronic properties over the standard InAs/GaSb T2SL structure with larger hh-lh splitting energy which is larger than the bandgap energy. The best result is obtained for (InAs)17/(AlSb)3/(GaSb)6 with the minimum bandgap of 128 meV with hh-lh splitting energy of 194 meV, which is important for suppressing the Auger recombination process. These values are very promising for a photodetector design in both MWIR and LWIR in high temperature applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4999632</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Augers ; Energy ; Mathematical analysis ; Photometers ; Splitting ; Superlattices ; Thickness</subject><ispartof>Journal of applied physics, 2018-01, Vol.123 (2)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-bf257e1533c604aa8aae086e196068a994daf60ed065d8d76d86030bf97d7ec93</citedby><cites>FETCH-LOGICAL-c327t-bf257e1533c604aa8aae086e196068a994daf60ed065d8d76d86030bf97d7ec93</cites><orcidid>0000-0003-1755-1063 ; 0000-0002-9312-6483 ; 0000-0001-8323-0343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akel, K.</creatorcontrib><creatorcontrib>Hostut, M.</creatorcontrib><creatorcontrib>Tansel, T.</creatorcontrib><creatorcontrib>Ergun, Y.</creatorcontrib><title>Large hh-lh splitting energy for InAs/AlSb/GaSb based N-structure photodetectors</title><title>Journal of applied physics</title><description>We investigate the band properties of InAs/AlSb/GaSb (N-structure) and InAs/GaSb material based type II superlattice (T2SL) photodedectors. The superlattice empirical pseudopotential method is used to define band-structures such as the bandgap and heavy hole-light hole (hh-lh) splitting energies in the mid-wavelength infrared range (MWIR) and long wavelength range (LWIR). The calculations are carried out on the variation of AlSb/GaSb layer thickness for (InAs)10.5/(AlSb)x/(GaSb)9-x and the variation of InAs layer thickness for (InAs)x/(AlSb)3/(GaSb)6 T2SL structures at 77 K. For the same bandgap energy of 229 meV (5.4 μm in wavelength), hh-lh splitting energy is calculated as 194 meV for the (InAs)7.5/(AlSb)3/(GaSb)6 structure compared to the (InAs)10.5/(GaSb)9 structure with hh-lh splitting energy of 91 meV within the MWIR. Long wavelength performance of InAs/AlSb/GaSb structure shows superior electronic properties over the standard InAs/GaSb T2SL structure with larger hh-lh splitting energy which is larger than the bandgap energy. The best result is obtained for (InAs)17/(AlSb)3/(GaSb)6 with the minimum bandgap of 128 meV with hh-lh splitting energy of 194 meV, which is important for suppressing the Auger recombination process. These values are very promising for a photodetector design in both MWIR and LWIR in high temperature applications.</description><subject>Applied physics</subject><subject>Augers</subject><subject>Energy</subject><subject>Mathematical analysis</subject><subject>Photometers</subject><subject>Splitting</subject><subject>Superlattices</subject><subject>Thickness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0MFLwzAYBfAgCs7pwf8g4Emh25dmTZPjGDoHQ4XpOaTN17WjNjVJhf33Tjbw7uldfrwHj5BbBhMGgk_ZZKaUEjw9IyMGUiV5lsE5GQGkLJEqV5fkKoQdAGOSqxF5Wxu_RVrXSVvT0LdNjE23pdih3-5p5TxddfMwnbebYro0m4IWJqClL0mIfijj4JH2tYvOYsQyOh-uyUVl2oA3pxyTj6fH98Vzsn5drhbzdVLyNI9JUaVZjizjvBQwM0YagyAFMiVASKPUzJpKAFoQmZU2F1YK4FBUKrc5loqPyd2xt_fua8AQ9c4NvjtM6pSxTIIEJQ_q_qhK70LwWOneN5_G7zUD_XuYZvp02ME-HG0om2hi47r_4W_n_6DubcV_AJ54eJo</recordid><startdate>20180114</startdate><enddate>20180114</enddate><creator>Akel, K.</creator><creator>Hostut, M.</creator><creator>Tansel, T.</creator><creator>Ergun, Y.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1755-1063</orcidid><orcidid>https://orcid.org/0000-0002-9312-6483</orcidid><orcidid>https://orcid.org/0000-0001-8323-0343</orcidid></search><sort><creationdate>20180114</creationdate><title>Large hh-lh splitting energy for InAs/AlSb/GaSb based N-structure photodetectors</title><author>Akel, K. ; Hostut, M. ; Tansel, T. ; Ergun, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-bf257e1533c604aa8aae086e196068a994daf60ed065d8d76d86030bf97d7ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Augers</topic><topic>Energy</topic><topic>Mathematical analysis</topic><topic>Photometers</topic><topic>Splitting</topic><topic>Superlattices</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akel, K.</creatorcontrib><creatorcontrib>Hostut, M.</creatorcontrib><creatorcontrib>Tansel, T.</creatorcontrib><creatorcontrib>Ergun, Y.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akel, K.</au><au>Hostut, M.</au><au>Tansel, T.</au><au>Ergun, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large hh-lh splitting energy for InAs/AlSb/GaSb based N-structure photodetectors</atitle><jtitle>Journal of applied physics</jtitle><date>2018-01-14</date><risdate>2018</risdate><volume>123</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We investigate the band properties of InAs/AlSb/GaSb (N-structure) and InAs/GaSb material based type II superlattice (T2SL) photodedectors. The superlattice empirical pseudopotential method is used to define band-structures such as the bandgap and heavy hole-light hole (hh-lh) splitting energies in the mid-wavelength infrared range (MWIR) and long wavelength range (LWIR). The calculations are carried out on the variation of AlSb/GaSb layer thickness for (InAs)10.5/(AlSb)x/(GaSb)9-x and the variation of InAs layer thickness for (InAs)x/(AlSb)3/(GaSb)6 T2SL structures at 77 K. For the same bandgap energy of 229 meV (5.4 μm in wavelength), hh-lh splitting energy is calculated as 194 meV for the (InAs)7.5/(AlSb)3/(GaSb)6 structure compared to the (InAs)10.5/(GaSb)9 structure with hh-lh splitting energy of 91 meV within the MWIR. Long wavelength performance of InAs/AlSb/GaSb structure shows superior electronic properties over the standard InAs/GaSb T2SL structure with larger hh-lh splitting energy which is larger than the bandgap energy. The best result is obtained for (InAs)17/(AlSb)3/(GaSb)6 with the minimum bandgap of 128 meV with hh-lh splitting energy of 194 meV, which is important for suppressing the Auger recombination process. These values are very promising for a photodetector design in both MWIR and LWIR in high temperature applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4999632</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1755-1063</orcidid><orcidid>https://orcid.org/0000-0002-9312-6483</orcidid><orcidid>https://orcid.org/0000-0001-8323-0343</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-01, Vol.123 (2)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2115808098
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Augers
Energy
Mathematical analysis
Photometers
Splitting
Superlattices
Thickness
title Large hh-lh splitting energy for InAs/AlSb/GaSb based N-structure photodetectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20hh-lh%20splitting%20energy%20for%20InAs/AlSb/GaSb%20based%20N-structure%20photodetectors&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Akel,%20K.&rft.date=2018-01-14&rft.volume=123&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4999632&rft_dat=%3Cproquest_scita%3E2115808098%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-bf257e1533c604aa8aae086e196068a994daf60ed065d8d76d86030bf97d7ec93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115808098&rft_id=info:pmid/&rfr_iscdi=true