Loading…

Improved thermal stability of TbF3-coated sintered Nd–Fe–B magnets by electrophoretic deposition

Using electrophoretic deposition (EPD) method, the impact of TbF3 diffusion on the coercivity, microstructure and thermal stability of sintered Nd–Fe–B magnets with different rare earth (RE) content was investigated. In the diffused magnets with the RE content of 34 wt.%, the maximum coercivity abou...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2018-05, Vol.8 (5), p.056222-056222-5
Main Authors: Cao, X. J., Chen, L., Guo, S., Di, J. H., Ding, G. F., Chen, R. J., Yan, A. R., Chen, K. Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-affdd51e9c3d43e5a19703d5dc3951b31bfac1e88f132177413e95792fb855e53
cites cdi_FETCH-LOGICAL-c393t-affdd51e9c3d43e5a19703d5dc3951b31bfac1e88f132177413e95792fb855e53
container_end_page 056222-5
container_issue 5
container_start_page 056222
container_title AIP advances
container_volume 8
creator Cao, X. J.
Chen, L.
Guo, S.
Di, J. H.
Ding, G. F.
Chen, R. J.
Yan, A. R.
Chen, K. Z.
description Using electrophoretic deposition (EPD) method, the impact of TbF3 diffusion on the coercivity, microstructure and thermal stability of sintered Nd–Fe–B magnets with different rare earth (RE) content was investigated. In the diffused magnets with the RE content of 34 wt.%, the maximum coercivity about 28.12 kOe with less than 1.44 wt.% Tb was achieved, the coercivity temperature coefficient (β) was improved to -0.50 %/°C from -0.58 %/°C within the temperature interval 25-160 °C, and the maximum operating temperature further increased to about 160 °C. It suggested that TbF3 diffused magnets had much superior thermal stability than the annealed samples. This was attributed to the formation of the Tb-rich (Nd, Tb)2Fe14B phase in the outer region of the matrix grains and the improved Nd-rich grain boundary phase after TbF3 diffusion.
doi_str_mv 10.1063/1.5007099
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115808770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_822c8a172ef0404da64e5fec652388e2</doaj_id><sourcerecordid>2115808770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-affdd51e9c3d43e5a19703d5dc3951b31bfac1e88f132177413e95792fb855e53</originalsourceid><addsrcrecordid>eNp9kcFKAzEQhoMoKNWDb7DgSWFrJtl0s0cVqwXRi55DNployrapSRR68x18Q5_EaEU8mcNkyHz8-fmHkEOgY6ATfgpjQWlLu26L7DEQsuaMTbb_9LvkIKU5LafpgMpmj9jZYhXDK9oqP2Fc6KFKWfd-8HldBVfd91Nem6BzAZJfZoylubUfb-9TLOW8WujHJeZU9esKBzQ5htVTiJi9qSyuQvLZh-U-2XF6SHjwc4_Iw_Ty_uK6vrm7ml2c3dSGdzzX2jlrBWBnuG04Cg1dS7kVtowF9Bx6pw2glA44g7ZtgGMn2o65XgqBgo_IbKNrg56rVfQLHdcqaK--H0J8VDoWawMqyZiRGlqGjja0sXrSoHBoJoJxKZEVraONVonn-QVTVvPwEpfFvmJQ8qSyLeZG5HhDmRhSiuh-fwWqvnaiQP3spLAnGzYZn_VXLv_An4SijII</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115808770</pqid></control><display><type>article</type><title>Improved thermal stability of TbF3-coated sintered Nd–Fe–B magnets by electrophoretic deposition</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Cao, X. J. ; Chen, L. ; Guo, S. ; Di, J. H. ; Ding, G. F. ; Chen, R. J. ; Yan, A. R. ; Chen, K. Z.</creator><creatorcontrib>Cao, X. J. ; Chen, L. ; Guo, S. ; Di, J. H. ; Ding, G. F. ; Chen, R. J. ; Yan, A. R. ; Chen, K. Z.</creatorcontrib><description>Using electrophoretic deposition (EPD) method, the impact of TbF3 diffusion on the coercivity, microstructure and thermal stability of sintered Nd–Fe–B magnets with different rare earth (RE) content was investigated. In the diffused magnets with the RE content of 34 wt.%, the maximum coercivity about 28.12 kOe with less than 1.44 wt.% Tb was achieved, the coercivity temperature coefficient (β) was improved to -0.50 %/°C from -0.58 %/°C within the temperature interval 25-160 °C, and the maximum operating temperature further increased to about 160 °C. It suggested that TbF3 diffused magnets had much superior thermal stability than the annealed samples. This was attributed to the formation of the Tb-rich (Nd, Tb)2Fe14B phase in the outer region of the matrix grains and the improved Nd-rich grain boundary phase after TbF3 diffusion.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5007099</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coercivity ; Electrophoretic deposition ; Grain boundaries ; Iron ; Magnets ; Neodymium ; Operating temperature ; Rare earth elements ; Sintering ; Temperature ; Thermal stability</subject><ispartof>AIP advances, 2018-05, Vol.8 (5), p.056222-056222-5</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-affdd51e9c3d43e5a19703d5dc3951b31bfac1e88f132177413e95792fb855e53</citedby><cites>FETCH-LOGICAL-c393t-affdd51e9c3d43e5a19703d5dc3951b31bfac1e88f132177413e95792fb855e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.5007099$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Cao, X. J.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Guo, S.</creatorcontrib><creatorcontrib>Di, J. H.</creatorcontrib><creatorcontrib>Ding, G. F.</creatorcontrib><creatorcontrib>Chen, R. J.</creatorcontrib><creatorcontrib>Yan, A. R.</creatorcontrib><creatorcontrib>Chen, K. Z.</creatorcontrib><title>Improved thermal stability of TbF3-coated sintered Nd–Fe–B magnets by electrophoretic deposition</title><title>AIP advances</title><description>Using electrophoretic deposition (EPD) method, the impact of TbF3 diffusion on the coercivity, microstructure and thermal stability of sintered Nd–Fe–B magnets with different rare earth (RE) content was investigated. In the diffused magnets with the RE content of 34 wt.%, the maximum coercivity about 28.12 kOe with less than 1.44 wt.% Tb was achieved, the coercivity temperature coefficient (β) was improved to -0.50 %/°C from -0.58 %/°C within the temperature interval 25-160 °C, and the maximum operating temperature further increased to about 160 °C. It suggested that TbF3 diffused magnets had much superior thermal stability than the annealed samples. This was attributed to the formation of the Tb-rich (Nd, Tb)2Fe14B phase in the outer region of the matrix grains and the improved Nd-rich grain boundary phase after TbF3 diffusion.</description><subject>Coercivity</subject><subject>Electrophoretic deposition</subject><subject>Grain boundaries</subject><subject>Iron</subject><subject>Magnets</subject><subject>Neodymium</subject><subject>Operating temperature</subject><subject>Rare earth elements</subject><subject>Sintering</subject><subject>Temperature</subject><subject>Thermal stability</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kcFKAzEQhoMoKNWDb7DgSWFrJtl0s0cVqwXRi55DNployrapSRR68x18Q5_EaEU8mcNkyHz8-fmHkEOgY6ATfgpjQWlLu26L7DEQsuaMTbb_9LvkIKU5LafpgMpmj9jZYhXDK9oqP2Fc6KFKWfd-8HldBVfd91Nem6BzAZJfZoylubUfb-9TLOW8WujHJeZU9esKBzQ5htVTiJi9qSyuQvLZh-U-2XF6SHjwc4_Iw_Ty_uK6vrm7ml2c3dSGdzzX2jlrBWBnuG04Cg1dS7kVtowF9Bx6pw2glA44g7ZtgGMn2o65XgqBgo_IbKNrg56rVfQLHdcqaK--H0J8VDoWawMqyZiRGlqGjja0sXrSoHBoJoJxKZEVraONVonn-QVTVvPwEpfFvmJQ8qSyLeZG5HhDmRhSiuh-fwWqvnaiQP3spLAnGzYZn_VXLv_An4SijII</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Cao, X. J.</creator><creator>Chen, L.</creator><creator>Guo, S.</creator><creator>Di, J. H.</creator><creator>Ding, G. F.</creator><creator>Chen, R. J.</creator><creator>Yan, A. R.</creator><creator>Chen, K. Z.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>201805</creationdate><title>Improved thermal stability of TbF3-coated sintered Nd–Fe–B magnets by electrophoretic deposition</title><author>Cao, X. J. ; Chen, L. ; Guo, S. ; Di, J. H. ; Ding, G. F. ; Chen, R. J. ; Yan, A. R. ; Chen, K. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-affdd51e9c3d43e5a19703d5dc3951b31bfac1e88f132177413e95792fb855e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coercivity</topic><topic>Electrophoretic deposition</topic><topic>Grain boundaries</topic><topic>Iron</topic><topic>Magnets</topic><topic>Neodymium</topic><topic>Operating temperature</topic><topic>Rare earth elements</topic><topic>Sintering</topic><topic>Temperature</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, X. J.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Guo, S.</creatorcontrib><creatorcontrib>Di, J. H.</creatorcontrib><creatorcontrib>Ding, G. F.</creatorcontrib><creatorcontrib>Chen, R. J.</creatorcontrib><creatorcontrib>Yan, A. R.</creatorcontrib><creatorcontrib>Chen, K. Z.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, X. J.</au><au>Chen, L.</au><au>Guo, S.</au><au>Di, J. H.</au><au>Ding, G. F.</au><au>Chen, R. J.</au><au>Yan, A. R.</au><au>Chen, K. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved thermal stability of TbF3-coated sintered Nd–Fe–B magnets by electrophoretic deposition</atitle><jtitle>AIP advances</jtitle><date>2018-05</date><risdate>2018</risdate><volume>8</volume><issue>5</issue><spage>056222</spage><epage>056222-5</epage><pages>056222-056222-5</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Using electrophoretic deposition (EPD) method, the impact of TbF3 diffusion on the coercivity, microstructure and thermal stability of sintered Nd–Fe–B magnets with different rare earth (RE) content was investigated. In the diffused magnets with the RE content of 34 wt.%, the maximum coercivity about 28.12 kOe with less than 1.44 wt.% Tb was achieved, the coercivity temperature coefficient (β) was improved to -0.50 %/°C from -0.58 %/°C within the temperature interval 25-160 °C, and the maximum operating temperature further increased to about 160 °C. It suggested that TbF3 diffused magnets had much superior thermal stability than the annealed samples. This was attributed to the formation of the Tb-rich (Nd, Tb)2Fe14B phase in the outer region of the matrix grains and the improved Nd-rich grain boundary phase after TbF3 diffusion.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5007099</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-05, Vol.8 (5), p.056222-056222-5
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2115808770
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Coercivity
Electrophoretic deposition
Grain boundaries
Iron
Magnets
Neodymium
Operating temperature
Rare earth elements
Sintering
Temperature
Thermal stability
title Improved thermal stability of TbF3-coated sintered Nd–Fe–B magnets by electrophoretic deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20thermal%20stability%20of%20TbF3-coated%20sintered%20Nd%E2%80%93Fe%E2%80%93B%20magnets%20by%20electrophoretic%20deposition&rft.jtitle=AIP%20advances&rft.au=Cao,%20X.%20J.&rft.date=2018-05&rft.volume=8&rft.issue=5&rft.spage=056222&rft.epage=056222-5&rft.pages=056222-056222-5&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5007099&rft_dat=%3Cproquest_cross%3E2115808770%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-affdd51e9c3d43e5a19703d5dc3951b31bfac1e88f132177413e95792fb855e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115808770&rft_id=info:pmid/&rfr_iscdi=true