Loading…

Thermal dependence of the lateral shift of a light beam reflected from a liquid crystal cell deposited on a magnetic film

We study the influence of the thermo-optic effect and of thermal expansion on the lateral shift experienced by a Gaussian near-infrared beam upon reflection from a voltage-controlled nematic liquid crystal cell deposited on a magnetic yttrium-iron garnet film. Variations of temperature are considere...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2018-01, Vol.123 (3)
Main Authors: Dadoenkova, Y. S., Bentivegna, F. F. L., Petrov, R. V., Bichurin, M. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-ef3aadde607a43b7867cf68016e67000b6ba69c50c178e44115a6d83f2d17a63
cites cdi_FETCH-LOGICAL-c361t-ef3aadde607a43b7867cf68016e67000b6ba69c50c178e44115a6d83f2d17a63
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 123
creator Dadoenkova, Y. S.
Bentivegna, F. F. L.
Petrov, R. V.
Bichurin, M. I.
description We study the influence of the thermo-optic effect and of thermal expansion on the lateral shift experienced by a Gaussian near-infrared beam upon reflection from a voltage-controlled nematic liquid crystal cell deposited on a magnetic yttrium-iron garnet film. Variations of temperature are considered in the range between room temperature and the nematic-isotropic phase transition temperature of the liquid crystal and induce changes in both the layer thicknesses and the permittivity tensor components of the constituents. We show that for all polarization configurations of the incoming and reflected beams, these changes modify the amplitude of the extrema of the lateral beam shift and their position with respect to the incidence angle of the beam and, except in the s–s polarization configuration, to the voltage applied to the liquid crystal cell. In the p–p and p–s polarization configurations, this drift can thus be controlled at some incidence angles by tuning the applied voltage. Moreover, in the p–s configuration, the lateral shift can be also controlled by a magnetization reversal in the magnetic layer. Finally, we discuss the possibility of temperature monitoring using the temperature dependence of the lateral shift in this system.
doi_str_mv 10.1063/1.5010162
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115809388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115809388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ef3aadde607a43b7867cf68016e67000b6ba69c50c178e44115a6d83f2d17a63</originalsourceid><addsrcrecordid>eNp9kU1rGzEQQEVpIG6aQ_6BoKcWNp2xvFrtMYS2CRhy8V3I0iirsLtyJDngf185Dsmh0NPAzJvHfDB2hXCNIMVPvG4BAeXyE1sgqL7p2hY-swXAEhvVd_05-5LzEwCiEv2CHTYDpcmM3NGOZkezJR49LwPx0RRKtZKH4MsxafgYHofCt2QmnsiPZAs57lOcXmvP--C4TYdcapel8VUaczhCca7IZB5nKsFyH8bpKzvzZsx0-RYv2Ob3r83tXbN--HN_e7NurJBYGvLCGOdIQmdWYtsp2VkvVV2RZAcAW7k1srctWOwUrVaIrZFOCb902BkpLtj3k3Ywo96lMJl00NEEfXez1sdcNfWtkPIFK_vtxO5SfN5TLvop7tNcp9PL6lXQC6U-jDbFnOsd3rUI-vgEjfrtCZX9cWKzDcWUEOd3-CWmD1DvnP8f_K_5L1nxlFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115809388</pqid></control><display><type>article</type><title>Thermal dependence of the lateral shift of a light beam reflected from a liquid crystal cell deposited on a magnetic film</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Dadoenkova, Y. S. ; Bentivegna, F. F. L. ; Petrov, R. V. ; Bichurin, M. I.</creator><creatorcontrib>Dadoenkova, Y. S. ; Bentivegna, F. F. L. ; Petrov, R. V. ; Bichurin, M. I.</creatorcontrib><description>We study the influence of the thermo-optic effect and of thermal expansion on the lateral shift experienced by a Gaussian near-infrared beam upon reflection from a voltage-controlled nematic liquid crystal cell deposited on a magnetic yttrium-iron garnet film. Variations of temperature are considered in the range between room temperature and the nematic-isotropic phase transition temperature of the liquid crystal and induce changes in both the layer thicknesses and the permittivity tensor components of the constituents. We show that for all polarization configurations of the incoming and reflected beams, these changes modify the amplitude of the extrema of the lateral beam shift and their position with respect to the incidence angle of the beam and, except in the s–s polarization configuration, to the voltage applied to the liquid crystal cell. In the p–p and p–s polarization configurations, this drift can thus be controlled at some incidence angles by tuning the applied voltage. Moreover, in the p–s configuration, the lateral shift can be also controlled by a magnetization reversal in the magnetic layer. Finally, we discuss the possibility of temperature monitoring using the temperature dependence of the lateral shift in this system.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5010162</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Configurations ; Electric potential ; Engineering Sciences ; Gaussian beams (optics) ; Incidence angle ; Infrared reflection ; Iron constituents ; Light beams ; Liquid crystals ; Magnetic films ; Magnetization reversal ; Nematic crystals ; Optics ; Phase transitions ; Photonic ; Polarization ; Temperature ; Temperature dependence ; Thermal expansion ; Transition temperature ; Yttrium ; Yttrium-iron garnet</subject><ispartof>Journal of applied physics, 2018-01, Vol.123 (3)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ef3aadde607a43b7867cf68016e67000b6ba69c50c178e44115a6d83f2d17a63</citedby><cites>FETCH-LOGICAL-c361t-ef3aadde607a43b7867cf68016e67000b6ba69c50c178e44115a6d83f2d17a63</cites><orcidid>0000-0003-1793-2157 ; 0000-0003-0650-4712 ; 0000-0001-9648-6583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01695366$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dadoenkova, Y. S.</creatorcontrib><creatorcontrib>Bentivegna, F. F. L.</creatorcontrib><creatorcontrib>Petrov, R. V.</creatorcontrib><creatorcontrib>Bichurin, M. I.</creatorcontrib><title>Thermal dependence of the lateral shift of a light beam reflected from a liquid crystal cell deposited on a magnetic film</title><title>Journal of applied physics</title><description>We study the influence of the thermo-optic effect and of thermal expansion on the lateral shift experienced by a Gaussian near-infrared beam upon reflection from a voltage-controlled nematic liquid crystal cell deposited on a magnetic yttrium-iron garnet film. Variations of temperature are considered in the range between room temperature and the nematic-isotropic phase transition temperature of the liquid crystal and induce changes in both the layer thicknesses and the permittivity tensor components of the constituents. We show that for all polarization configurations of the incoming and reflected beams, these changes modify the amplitude of the extrema of the lateral beam shift and their position with respect to the incidence angle of the beam and, except in the s–s polarization configuration, to the voltage applied to the liquid crystal cell. In the p–p and p–s polarization configurations, this drift can thus be controlled at some incidence angles by tuning the applied voltage. Moreover, in the p–s configuration, the lateral shift can be also controlled by a magnetization reversal in the magnetic layer. Finally, we discuss the possibility of temperature monitoring using the temperature dependence of the lateral shift in this system.</description><subject>Applied physics</subject><subject>Configurations</subject><subject>Electric potential</subject><subject>Engineering Sciences</subject><subject>Gaussian beams (optics)</subject><subject>Incidence angle</subject><subject>Infrared reflection</subject><subject>Iron constituents</subject><subject>Light beams</subject><subject>Liquid crystals</subject><subject>Magnetic films</subject><subject>Magnetization reversal</subject><subject>Nematic crystals</subject><subject>Optics</subject><subject>Phase transitions</subject><subject>Photonic</subject><subject>Polarization</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><subject>Transition temperature</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rGzEQQEVpIG6aQ_6BoKcWNp2xvFrtMYS2CRhy8V3I0iirsLtyJDngf185Dsmh0NPAzJvHfDB2hXCNIMVPvG4BAeXyE1sgqL7p2hY-swXAEhvVd_05-5LzEwCiEv2CHTYDpcmM3NGOZkezJR49LwPx0RRKtZKH4MsxafgYHofCt2QmnsiPZAs57lOcXmvP--C4TYdcapel8VUaczhCca7IZB5nKsFyH8bpKzvzZsx0-RYv2Ob3r83tXbN--HN_e7NurJBYGvLCGOdIQmdWYtsp2VkvVV2RZAcAW7k1srctWOwUrVaIrZFOCb902BkpLtj3k3Ywo96lMJl00NEEfXez1sdcNfWtkPIFK_vtxO5SfN5TLvop7tNcp9PL6lXQC6U-jDbFnOsd3rUI-vgEjfrtCZX9cWKzDcWUEOd3-CWmD1DvnP8f_K_5L1nxlFQ</recordid><startdate>20180121</startdate><enddate>20180121</enddate><creator>Dadoenkova, Y. S.</creator><creator>Bentivegna, F. F. L.</creator><creator>Petrov, R. V.</creator><creator>Bichurin, M. I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1793-2157</orcidid><orcidid>https://orcid.org/0000-0003-0650-4712</orcidid><orcidid>https://orcid.org/0000-0001-9648-6583</orcidid></search><sort><creationdate>20180121</creationdate><title>Thermal dependence of the lateral shift of a light beam reflected from a liquid crystal cell deposited on a magnetic film</title><author>Dadoenkova, Y. S. ; Bentivegna, F. F. L. ; Petrov, R. V. ; Bichurin, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ef3aadde607a43b7867cf68016e67000b6ba69c50c178e44115a6d83f2d17a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Configurations</topic><topic>Electric potential</topic><topic>Engineering Sciences</topic><topic>Gaussian beams (optics)</topic><topic>Incidence angle</topic><topic>Infrared reflection</topic><topic>Iron constituents</topic><topic>Light beams</topic><topic>Liquid crystals</topic><topic>Magnetic films</topic><topic>Magnetization reversal</topic><topic>Nematic crystals</topic><topic>Optics</topic><topic>Phase transitions</topic><topic>Photonic</topic><topic>Polarization</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><topic>Transition temperature</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dadoenkova, Y. S.</creatorcontrib><creatorcontrib>Bentivegna, F. F. L.</creatorcontrib><creatorcontrib>Petrov, R. V.</creatorcontrib><creatorcontrib>Bichurin, M. I.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadoenkova, Y. S.</au><au>Bentivegna, F. F. L.</au><au>Petrov, R. V.</au><au>Bichurin, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal dependence of the lateral shift of a light beam reflected from a liquid crystal cell deposited on a magnetic film</atitle><jtitle>Journal of applied physics</jtitle><date>2018-01-21</date><risdate>2018</risdate><volume>123</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We study the influence of the thermo-optic effect and of thermal expansion on the lateral shift experienced by a Gaussian near-infrared beam upon reflection from a voltage-controlled nematic liquid crystal cell deposited on a magnetic yttrium-iron garnet film. Variations of temperature are considered in the range between room temperature and the nematic-isotropic phase transition temperature of the liquid crystal and induce changes in both the layer thicknesses and the permittivity tensor components of the constituents. We show that for all polarization configurations of the incoming and reflected beams, these changes modify the amplitude of the extrema of the lateral beam shift and their position with respect to the incidence angle of the beam and, except in the s–s polarization configuration, to the voltage applied to the liquid crystal cell. In the p–p and p–s polarization configurations, this drift can thus be controlled at some incidence angles by tuning the applied voltage. Moreover, in the p–s configuration, the lateral shift can be also controlled by a magnetization reversal in the magnetic layer. Finally, we discuss the possibility of temperature monitoring using the temperature dependence of the lateral shift in this system.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5010162</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1793-2157</orcidid><orcidid>https://orcid.org/0000-0003-0650-4712</orcidid><orcidid>https://orcid.org/0000-0001-9648-6583</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-01, Vol.123 (3)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2115809388
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Configurations
Electric potential
Engineering Sciences
Gaussian beams (optics)
Incidence angle
Infrared reflection
Iron constituents
Light beams
Liquid crystals
Magnetic films
Magnetization reversal
Nematic crystals
Optics
Phase transitions
Photonic
Polarization
Temperature
Temperature dependence
Thermal expansion
Transition temperature
Yttrium
Yttrium-iron garnet
title Thermal dependence of the lateral shift of a light beam reflected from a liquid crystal cell deposited on a magnetic film
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20dependence%20of%20the%20lateral%20shift%20of%20a%20light%20beam%20reflected%20from%20a%20liquid%20crystal%20cell%20deposited%20on%20a%20magnetic%20film&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Dadoenkova,%20Y.%20S.&rft.date=2018-01-21&rft.volume=123&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5010162&rft_dat=%3Cproquest_cross%3E2115809388%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-ef3aadde607a43b7867cf68016e67000b6ba69c50c178e44115a6d83f2d17a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115809388&rft_id=info:pmid/&rfr_iscdi=true