Loading…

A novel concept of fault current limiter based on saturable core in high voltage DC transmission system

To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high v...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2018-05, Vol.8 (5), p.056636-056636-6
Main Authors: Yuan, Jiaxin, Zhou, Hang, Gan, Pengcheng, Zhong, Yongheng, Gao, Yanhui, Muramatsu, Kazuhiro, Du, Zhiye, Chen, Baichao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.5006531