Loading…

First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing

Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high press...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2018-02, Vol.123 (5)
Main Authors: Zhang, Zhongyang, Nian, Qiong, Doumanidis, Charalabos C., Liao, Yiliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105–106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5021894