Loading…

Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance

Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2018-01, Vol.25 (1)
Main Authors: Hunter, E. D., Evetts, N., Fajans, J., Hardy, W. N., Landsberger, H., Mcpeters, R., Wurtele, J. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203
cites cdi_FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203
container_end_page
container_issue 1
container_start_page
container_title Physics of plasmas
container_volume 25
creator Hunter, E. D.
Evetts, N.
Fajans, J.
Hardy, W. N.
Landsberger, H.
Mcpeters, R.
Wurtele, J. S.
description Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (1/4 s)(B/1 T)2, and significant cooling is not normally observed unless B≳1 T. Cooling to the trap temperatures of ∼10 K is particularly difficult to attain. Here, we show that dramatically higher cooling rates (×100) and lower temperatures (÷1000) can be obtained if the plasmas are held in electromagnetic cavities rather than in effectively free space conditions. We find that plasmas with up to 107 particles can be cooled in fields close to 0.15 T, much lower than 1 T commonly thought to be necessary to obtain plasma cooling. Appropriate cavities can be constructed with only minor modifications to the standard Penning-Malmberg trap structures.
doi_str_mv 10.1063/1.5006700
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2115811335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115811335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203</originalsourceid><addsrcrecordid>eNp90E9L9DAQBvAiCv49-A2CnhSqM23SpEcR9X15F7woeAtpOtVIN6lJXNlv7y4rehDe08zhxzPDUxTHCBcITX2JFwKgkQBbxR6CakvZSL693iWUTcOfdov9lF4BgDdC7RX_ZuGDzc2zp-wsGxyNPbMhjM4_szCwkaYcPJtGk-YmsYUzzC7tGHIMvrRm4fKSRUrBG2_psNgZzJjo6GseFI-3Nw_Xf8rZ_d3f66tZabkQueyIOHIQOECFbdV1nSIlW1WJvlHU9mqQkveWN0qCbG0vrakEGdFRjYQV1AfFySY3pOx0si6TfbHBe7JZI8caQK3Q6QZNMby9U8r6NbxHv_pLV4hCIda1WKmzjbIxpBRp0FN0cxOXGkGvC9Wovwpd2fONXV802QX_jRch_kA99cP_8O_kT22qguE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115811335</pqid></control><display><type>article</type><title>Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Hunter, E. D. ; Evetts, N. ; Fajans, J. ; Hardy, W. N. ; Landsberger, H. ; Mcpeters, R. ; Wurtele, J. S.</creator><creatorcontrib>Hunter, E. D. ; Evetts, N. ; Fajans, J. ; Hardy, W. N. ; Landsberger, H. ; Mcpeters, R. ; Wurtele, J. S.</creatorcontrib><description>Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (1/4 s)(B/1 T)2, and significant cooling is not normally observed unless B≳1 T. Cooling to the trap temperatures of ∼10 K is particularly difficult to attain. Here, we show that dramatically higher cooling rates (×100) and lower temperatures (÷1000) can be obtained if the plasmas are held in electromagnetic cavities rather than in effectively free space conditions. We find that plasmas with up to 107 particles can be cooled in fields close to 0.15 T, much lower than 1 T commonly thought to be necessary to obtain plasma cooling. Appropriate cavities can be constructed with only minor modifications to the standard Penning-Malmberg trap structures.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5006700</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Construction standards ; Cooling ; Cooling rate ; Cryogenic temperature ; Cyclotron resonance ; Holes ; Leptons ; Magnetic fields ; Magnetic resonance ; Plasma ; Plasma cooling ; Plasma physics ; Plasmas (physics)</subject><ispartof>Physics of plasmas, 2018-01, Vol.25 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203</citedby><cites>FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203</cites><orcidid>0000-0002-7800-1391 ; 0000-0002-4403-6027 ; 0000000244036027 ; 0000000278001391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5006700$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27922,27923,76153</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1413008$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, E. D.</creatorcontrib><creatorcontrib>Evetts, N.</creatorcontrib><creatorcontrib>Fajans, J.</creatorcontrib><creatorcontrib>Hardy, W. N.</creatorcontrib><creatorcontrib>Landsberger, H.</creatorcontrib><creatorcontrib>Mcpeters, R.</creatorcontrib><creatorcontrib>Wurtele, J. S.</creatorcontrib><title>Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance</title><title>Physics of plasmas</title><description>Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (1/4 s)(B/1 T)2, and significant cooling is not normally observed unless B≳1 T. Cooling to the trap temperatures of ∼10 K is particularly difficult to attain. Here, we show that dramatically higher cooling rates (×100) and lower temperatures (÷1000) can be obtained if the plasmas are held in electromagnetic cavities rather than in effectively free space conditions. We find that plasmas with up to 107 particles can be cooled in fields close to 0.15 T, much lower than 1 T commonly thought to be necessary to obtain plasma cooling. Appropriate cavities can be constructed with only minor modifications to the standard Penning-Malmberg trap structures.</description><subject>Construction standards</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cryogenic temperature</subject><subject>Cyclotron resonance</subject><subject>Holes</subject><subject>Leptons</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Plasma</subject><subject>Plasma cooling</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E9L9DAQBvAiCv49-A2CnhSqM23SpEcR9X15F7woeAtpOtVIN6lJXNlv7y4rehDe08zhxzPDUxTHCBcITX2JFwKgkQBbxR6CakvZSL693iWUTcOfdov9lF4BgDdC7RX_ZuGDzc2zp-wsGxyNPbMhjM4_szCwkaYcPJtGk-YmsYUzzC7tGHIMvrRm4fKSRUrBG2_psNgZzJjo6GseFI-3Nw_Xf8rZ_d3f66tZabkQueyIOHIQOECFbdV1nSIlW1WJvlHU9mqQkveWN0qCbG0vrakEGdFRjYQV1AfFySY3pOx0si6TfbHBe7JZI8caQK3Q6QZNMby9U8r6NbxHv_pLV4hCIda1WKmzjbIxpBRp0FN0cxOXGkGvC9Wovwpd2fONXV802QX_jRch_kA99cP_8O_kT22qguE</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hunter, E. D.</creator><creator>Evetts, N.</creator><creator>Fajans, J.</creator><creator>Hardy, W. N.</creator><creator>Landsberger, H.</creator><creator>Mcpeters, R.</creator><creator>Wurtele, J. S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7800-1391</orcidid><orcidid>https://orcid.org/0000-0002-4403-6027</orcidid><orcidid>https://orcid.org/0000000244036027</orcidid><orcidid>https://orcid.org/0000000278001391</orcidid></search><sort><creationdate>20180101</creationdate><title>Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance</title><author>Hunter, E. D. ; Evetts, N. ; Fajans, J. ; Hardy, W. N. ; Landsberger, H. ; Mcpeters, R. ; Wurtele, J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Construction standards</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cryogenic temperature</topic><topic>Cyclotron resonance</topic><topic>Holes</topic><topic>Leptons</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Plasma</topic><topic>Plasma cooling</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, E. D.</creatorcontrib><creatorcontrib>Evetts, N.</creatorcontrib><creatorcontrib>Fajans, J.</creatorcontrib><creatorcontrib>Hardy, W. N.</creatorcontrib><creatorcontrib>Landsberger, H.</creatorcontrib><creatorcontrib>Mcpeters, R.</creatorcontrib><creatorcontrib>Wurtele, J. S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, E. D.</au><au>Evetts, N.</au><au>Fajans, J.</au><au>Hardy, W. N.</au><au>Landsberger, H.</au><au>Mcpeters, R.</au><au>Wurtele, J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance</atitle><jtitle>Physics of plasmas</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (1/4 s)(B/1 T)2, and significant cooling is not normally observed unless B≳1 T. Cooling to the trap temperatures of ∼10 K is particularly difficult to attain. Here, we show that dramatically higher cooling rates (×100) and lower temperatures (÷1000) can be obtained if the plasmas are held in electromagnetic cavities rather than in effectively free space conditions. We find that plasmas with up to 107 particles can be cooled in fields close to 0.15 T, much lower than 1 T commonly thought to be necessary to obtain plasma cooling. Appropriate cavities can be constructed with only minor modifications to the standard Penning-Malmberg trap structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5006700</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7800-1391</orcidid><orcidid>https://orcid.org/0000-0002-4403-6027</orcidid><orcidid>https://orcid.org/0000000244036027</orcidid><orcidid>https://orcid.org/0000000278001391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2018-01, Vol.25 (1)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_2115811335
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Construction standards
Cooling
Cooling rate
Cryogenic temperature
Cyclotron resonance
Holes
Leptons
Magnetic fields
Magnetic resonance
Plasma
Plasma cooling
Plasma physics
Plasmas (physics)
title Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20magnetic%20field%20cooling%20of%20lepton%20plasmas%20via%20cyclotron-cavity%20resonance&rft.jtitle=Physics%20of%20plasmas&rft.au=Hunter,%20E.%20D.&rft.date=2018-01-01&rft.volume=25&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5006700&rft_dat=%3Cproquest_scita%3E2115811335%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115811335&rft_id=info:pmid/&rfr_iscdi=true