Loading…
Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance
Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (...
Saved in:
Published in: | Physics of plasmas 2018-01, Vol.25 (1) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 25 |
creator | Hunter, E. D. Evetts, N. Fajans, J. Hardy, W. N. Landsberger, H. Mcpeters, R. Wurtele, J. S. |
description | Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (1/4 s)(B/1 T)2, and significant cooling is not normally observed unless
B≳1 T. Cooling to the trap temperatures of ∼10 K is particularly difficult to attain. Here, we show that dramatically higher cooling rates (×100) and lower temperatures (÷1000) can be obtained if the plasmas are held in electromagnetic cavities rather than in effectively free space conditions. We find that plasmas with up to 107 particles can be cooled in fields close to 0.15 T, much lower than 1 T commonly thought to be necessary to obtain plasma cooling. Appropriate cavities can be constructed with only minor modifications to the standard Penning-Malmberg trap structures. |
doi_str_mv | 10.1063/1.5006700 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2115811335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115811335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203</originalsourceid><addsrcrecordid>eNp90E9L9DAQBvAiCv49-A2CnhSqM23SpEcR9X15F7woeAtpOtVIN6lJXNlv7y4rehDe08zhxzPDUxTHCBcITX2JFwKgkQBbxR6CakvZSL693iWUTcOfdov9lF4BgDdC7RX_ZuGDzc2zp-wsGxyNPbMhjM4_szCwkaYcPJtGk-YmsYUzzC7tGHIMvrRm4fKSRUrBG2_psNgZzJjo6GseFI-3Nw_Xf8rZ_d3f66tZabkQueyIOHIQOECFbdV1nSIlW1WJvlHU9mqQkveWN0qCbG0vrakEGdFRjYQV1AfFySY3pOx0si6TfbHBe7JZI8caQK3Q6QZNMby9U8r6NbxHv_pLV4hCIda1WKmzjbIxpBRp0FN0cxOXGkGvC9Wovwpd2fONXV802QX_jRch_kA99cP_8O_kT22qguE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115811335</pqid></control><display><type>article</type><title>Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Hunter, E. D. ; Evetts, N. ; Fajans, J. ; Hardy, W. N. ; Landsberger, H. ; Mcpeters, R. ; Wurtele, J. S.</creator><creatorcontrib>Hunter, E. D. ; Evetts, N. ; Fajans, J. ; Hardy, W. N. ; Landsberger, H. ; Mcpeters, R. ; Wurtele, J. S.</creatorcontrib><description>Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (1/4 s)(B/1 T)2, and significant cooling is not normally observed unless
B≳1 T. Cooling to the trap temperatures of ∼10 K is particularly difficult to attain. Here, we show that dramatically higher cooling rates (×100) and lower temperatures (÷1000) can be obtained if the plasmas are held in electromagnetic cavities rather than in effectively free space conditions. We find that plasmas with up to 107 particles can be cooled in fields close to 0.15 T, much lower than 1 T commonly thought to be necessary to obtain plasma cooling. Appropriate cavities can be constructed with only minor modifications to the standard Penning-Malmberg trap structures.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5006700</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Construction standards ; Cooling ; Cooling rate ; Cryogenic temperature ; Cyclotron resonance ; Holes ; Leptons ; Magnetic fields ; Magnetic resonance ; Plasma ; Plasma cooling ; Plasma physics ; Plasmas (physics)</subject><ispartof>Physics of plasmas, 2018-01, Vol.25 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203</citedby><cites>FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203</cites><orcidid>0000-0002-7800-1391 ; 0000-0002-4403-6027 ; 0000000244036027 ; 0000000278001391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5006700$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27922,27923,76153</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1413008$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, E. D.</creatorcontrib><creatorcontrib>Evetts, N.</creatorcontrib><creatorcontrib>Fajans, J.</creatorcontrib><creatorcontrib>Hardy, W. N.</creatorcontrib><creatorcontrib>Landsberger, H.</creatorcontrib><creatorcontrib>Mcpeters, R.</creatorcontrib><creatorcontrib>Wurtele, J. S.</creatorcontrib><title>Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance</title><title>Physics of plasmas</title><description>Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (1/4 s)(B/1 T)2, and significant cooling is not normally observed unless
B≳1 T. Cooling to the trap temperatures of ∼10 K is particularly difficult to attain. Here, we show that dramatically higher cooling rates (×100) and lower temperatures (÷1000) can be obtained if the plasmas are held in electromagnetic cavities rather than in effectively free space conditions. We find that plasmas with up to 107 particles can be cooled in fields close to 0.15 T, much lower than 1 T commonly thought to be necessary to obtain plasma cooling. Appropriate cavities can be constructed with only minor modifications to the standard Penning-Malmberg trap structures.</description><subject>Construction standards</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cryogenic temperature</subject><subject>Cyclotron resonance</subject><subject>Holes</subject><subject>Leptons</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Plasma</subject><subject>Plasma cooling</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E9L9DAQBvAiCv49-A2CnhSqM23SpEcR9X15F7woeAtpOtVIN6lJXNlv7y4rehDe08zhxzPDUxTHCBcITX2JFwKgkQBbxR6CakvZSL693iWUTcOfdov9lF4BgDdC7RX_ZuGDzc2zp-wsGxyNPbMhjM4_szCwkaYcPJtGk-YmsYUzzC7tGHIMvrRm4fKSRUrBG2_psNgZzJjo6GseFI-3Nw_Xf8rZ_d3f66tZabkQueyIOHIQOECFbdV1nSIlW1WJvlHU9mqQkveWN0qCbG0vrakEGdFRjYQV1AfFySY3pOx0si6TfbHBe7JZI8caQK3Q6QZNMby9U8r6NbxHv_pLV4hCIda1WKmzjbIxpBRp0FN0cxOXGkGvC9Wovwpd2fONXV802QX_jRch_kA99cP_8O_kT22qguE</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hunter, E. D.</creator><creator>Evetts, N.</creator><creator>Fajans, J.</creator><creator>Hardy, W. N.</creator><creator>Landsberger, H.</creator><creator>Mcpeters, R.</creator><creator>Wurtele, J. S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7800-1391</orcidid><orcidid>https://orcid.org/0000-0002-4403-6027</orcidid><orcidid>https://orcid.org/0000000244036027</orcidid><orcidid>https://orcid.org/0000000278001391</orcidid></search><sort><creationdate>20180101</creationdate><title>Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance</title><author>Hunter, E. D. ; Evetts, N. ; Fajans, J. ; Hardy, W. N. ; Landsberger, H. ; Mcpeters, R. ; Wurtele, J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Construction standards</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cryogenic temperature</topic><topic>Cyclotron resonance</topic><topic>Holes</topic><topic>Leptons</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Plasma</topic><topic>Plasma cooling</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, E. D.</creatorcontrib><creatorcontrib>Evetts, N.</creatorcontrib><creatorcontrib>Fajans, J.</creatorcontrib><creatorcontrib>Hardy, W. N.</creatorcontrib><creatorcontrib>Landsberger, H.</creatorcontrib><creatorcontrib>Mcpeters, R.</creatorcontrib><creatorcontrib>Wurtele, J. S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, E. D.</au><au>Evetts, N.</au><au>Fajans, J.</au><au>Hardy, W. N.</au><au>Landsberger, H.</au><au>Mcpeters, R.</au><au>Wurtele, J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance</atitle><jtitle>Physics of plasmas</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Pure electron or pure positron plasmas held in magnetic fields B radiate energy because of the cyclotron motion of the plasma particles; nominally, the plasmas should cool to the often cryogenic temperatures of the trap in which they are confined. However, the cyclotron cooling rate for leptons is (1/4 s)(B/1 T)2, and significant cooling is not normally observed unless
B≳1 T. Cooling to the trap temperatures of ∼10 K is particularly difficult to attain. Here, we show that dramatically higher cooling rates (×100) and lower temperatures (÷1000) can be obtained if the plasmas are held in electromagnetic cavities rather than in effectively free space conditions. We find that plasmas with up to 107 particles can be cooled in fields close to 0.15 T, much lower than 1 T commonly thought to be necessary to obtain plasma cooling. Appropriate cavities can be constructed with only minor modifications to the standard Penning-Malmberg trap structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5006700</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7800-1391</orcidid><orcidid>https://orcid.org/0000-0002-4403-6027</orcidid><orcidid>https://orcid.org/0000000244036027</orcidid><orcidid>https://orcid.org/0000000278001391</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2018-01, Vol.25 (1) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_2115811335 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | Construction standards Cooling Cooling rate Cryogenic temperature Cyclotron resonance Holes Leptons Magnetic fields Magnetic resonance Plasma Plasma cooling Plasma physics Plasmas (physics) |
title | Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20magnetic%20field%20cooling%20of%20lepton%20plasmas%20via%20cyclotron-cavity%20resonance&rft.jtitle=Physics%20of%20plasmas&rft.au=Hunter,%20E.%20D.&rft.date=2018-01-01&rft.volume=25&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5006700&rft_dat=%3Cproquest_scita%3E2115811335%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-bee414051f02192bbb8e879825d68e9d8f774dc4687079cd7ca25ea5be31e1203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115811335&rft_id=info:pmid/&rfr_iscdi=true |