Loading…

LaAlO3: A substrate material with unusual ferroelastic properties

Twin boundary dynamics in LaAlO3 is associated with non-linear anelasticity. Ultrasonic studies of non-linear twin boundary dynamics between 80 and 520 K show that cooling substrates from temperatures near the ferroelastic transition at 813 K generate three characteristic thermal regimes with differ...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2018-01, Vol.112 (4)
Main Authors: Kustov, S., Liubimova, Iu, Salje, E. K. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Twin boundary dynamics in LaAlO3 is associated with non-linear anelasticity. Ultrasonic studies of non-linear twin boundary dynamics between 80 and 520 K show that cooling substrates from temperatures near the ferroelastic transition at 813 K generate three characteristic thermal regimes with different non-linear dynamics. Twin boundaries are initially highly mobile. Anelastic strain amplitudes versus stress are power law distributed with an exponent of 2.5. No de-pinning was found down to elastic strain amplitudes of ε0 ∼ 10−7. The power law is gradually replaced between 370 K and 280 K by few large singularities (jerks) due to massive rearrangements of the domain structure for ε0 larger than ca. 5 × 10−5. At lower temperatures, the domain structure is pinned with well-defined thresholds for de-pinning. The de-pinning is not accompanied by global rearrangements of twin patterns below room temperature. Unexpectedly, the low-temperature critical de-pinning strain amplitude decreases with decreasing temperature, which may indicate an additional, so far unknown phase transition near 40 K.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5017679