Loading…
Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications
Environmentally benign Bi3.25La0.75Ti3O12 (BLTO) thin film capacitors were prepared by a cost effective chemical solution deposition method for high energy density storage device applications. Low annealing temperature annealed BLTO thin films showed very slim hysteresis loops with high maximum and...
Saved in:
Published in: | Applied physics letters 2017-10, Vol.111 (18) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Environmentally benign Bi3.25La0.75Ti3O12 (BLTO) thin film capacitors were prepared by a cost effective chemical solution deposition method for high energy density storage device applications. Low annealing temperature annealed BLTO thin films showed very slim hysteresis loops with high maximum and small remnant polarization values. Increasing the applied electric field to 2040 kV/cm, the optimized BLTO thin films show a high recoverable energy density of 44.7 J/cm3 and an energy efficiency of 78.4% at room temperature. Additionally, the BLTO thin film capacitors exhibited excellent fatigue endurance after 4 × 108 cycles and a good thermal stability up to 140 °C, proving their strong potential for high energy density storage and conversion applications. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4997351 |