Loading…

Irreducible forms of matrix product states: Theory and applications

The canonical form of Matrix Product States (MPS) and the associated fundamental theorem, which relates different MPS representations of a state, are the theoretical framework underlying many of the analytical results derived through MPS, such as the classification of symmetry-protected phases in on...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2017-12, Vol.58 (12), p.1
Main Authors: De las Cuevas, Gemma, Cirac, J. Ignacio, Schuch, Norbert, Perez-Garcia, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-7d409cda3f646d516b6bfe275fa7cfb8ce5c299543f9a60c430c0c5d471bf0493
cites cdi_FETCH-LOGICAL-c320t-7d409cda3f646d516b6bfe275fa7cfb8ce5c299543f9a60c430c0c5d471bf0493
container_end_page
container_issue 12
container_start_page 1
container_title Journal of mathematical physics
container_volume 58
creator De las Cuevas, Gemma
Cirac, J. Ignacio
Schuch, Norbert
Perez-Garcia, David
description The canonical form of Matrix Product States (MPS) and the associated fundamental theorem, which relates different MPS representations of a state, are the theoretical framework underlying many of the analytical results derived through MPS, such as the classification of symmetry-protected phases in one dimension. Yet, the canonical form is only defined for MPS without non-trivial periods and thus cannot fully capture paradigmatic states such as the antiferromagnet. Here, we introduce a new standard form for MPS, the irreducible form, which is defined for arbitrary MPS, including periodic states, and show that any tensor can be transformed into a tensor in irreducible form describing the same MPS. We then prove a fundamental theorem for MPS in irreducible form: If two tensors in irreducible form give rise to the same MPS, then they must be related by a similarity transform, together with a matrix of phases. We provide two applications of this result: an equivalence between the refinement properties of a state and the divisibility properties of its transfer matrix, and a more general characterisation of tensors that give rise to matrix product states with symmetries.
doi_str_mv 10.1063/1.5000784
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116015811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989189076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-7d409cda3f646d516b6bfe275fa7cfb8ce5c299543f9a60c430c0c5d471bf0493</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCtbqwW8Q8KSwdSabpzcpPgoFL_W8ZLMJbmm7a5IF--1dbc89zWF-zONPyC3CDEGWjzgTAKA0PyMTBG0KJYU-JxMAxgrGtb4kVymtARA15xMyX8Tom8G19cbT0MVtol2gW5tj-0P72I2tTFO22acnuvryXdxTu2uo7ftN62xuu126JhfBbpK_OdYp-Xx9Wc3fi-XH22L-vCxcySAXquFgXGPLILlsBMpa1sEzJYJVLtTaeeGYMYKXwVgJjpfgwImGK6wDcFNOyd1h7njX9-BTrtbdEHfjyoohSkChEU8pNNqgNqDkqO4PysUupehD1cd2a-O-Qqj-kqywOiY52oeDTa7N_y-fwL_LWXGT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989189076</pqid></control><display><type>article</type><title>Irreducible forms of matrix product states: Theory and applications</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>De las Cuevas, Gemma ; Cirac, J. Ignacio ; Schuch, Norbert ; Perez-Garcia, David</creator><creatorcontrib>De las Cuevas, Gemma ; Cirac, J. Ignacio ; Schuch, Norbert ; Perez-Garcia, David</creatorcontrib><description>The canonical form of Matrix Product States (MPS) and the associated fundamental theorem, which relates different MPS representations of a state, are the theoretical framework underlying many of the analytical results derived through MPS, such as the classification of symmetry-protected phases in one dimension. Yet, the canonical form is only defined for MPS without non-trivial periods and thus cannot fully capture paradigmatic states such as the antiferromagnet. Here, we introduce a new standard form for MPS, the irreducible form, which is defined for arbitrary MPS, including periodic states, and show that any tensor can be transformed into a tensor in irreducible form describing the same MPS. We then prove a fundamental theorem for MPS in irreducible form: If two tensors in irreducible form give rise to the same MPS, then they must be related by a similarity transform, together with a matrix of phases. We provide two applications of this result: an equivalence between the refinement properties of a state and the divisibility properties of its transfer matrix, and a more general characterisation of tensors that give rise to matrix product states with symmetries.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5000784</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Antiferromagnetism ; Mathematical analysis ; Matrix ; Matrix methods ; Physics ; Symmetry ; Tensors ; Theorems</subject><ispartof>Journal of mathematical physics, 2017-12, Vol.58 (12), p.1</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Dec 2017</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-7d409cda3f646d516b6bfe275fa7cfb8ce5c299543f9a60c430c0c5d471bf0493</citedby><cites>FETCH-LOGICAL-c320t-7d409cda3f646d516b6bfe275fa7cfb8ce5c299543f9a60c430c0c5d471bf0493</cites><orcidid>0000-0002-0977-7727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5000784$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,779,781,792,27906,27907,76133</link.rule.ids></links><search><creatorcontrib>De las Cuevas, Gemma</creatorcontrib><creatorcontrib>Cirac, J. Ignacio</creatorcontrib><creatorcontrib>Schuch, Norbert</creatorcontrib><creatorcontrib>Perez-Garcia, David</creatorcontrib><title>Irreducible forms of matrix product states: Theory and applications</title><title>Journal of mathematical physics</title><description>The canonical form of Matrix Product States (MPS) and the associated fundamental theorem, which relates different MPS representations of a state, are the theoretical framework underlying many of the analytical results derived through MPS, such as the classification of symmetry-protected phases in one dimension. Yet, the canonical form is only defined for MPS without non-trivial periods and thus cannot fully capture paradigmatic states such as the antiferromagnet. Here, we introduce a new standard form for MPS, the irreducible form, which is defined for arbitrary MPS, including periodic states, and show that any tensor can be transformed into a tensor in irreducible form describing the same MPS. We then prove a fundamental theorem for MPS in irreducible form: If two tensors in irreducible form give rise to the same MPS, then they must be related by a similarity transform, together with a matrix of phases. We provide two applications of this result: an equivalence between the refinement properties of a state and the divisibility properties of its transfer matrix, and a more general characterisation of tensors that give rise to matrix product states with symmetries.</description><subject>Antiferromagnetism</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Physics</subject><subject>Symmetry</subject><subject>Tensors</subject><subject>Theorems</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQB_AgCtbqwW8Q8KSwdSabpzcpPgoFL_W8ZLMJbmm7a5IF--1dbc89zWF-zONPyC3CDEGWjzgTAKA0PyMTBG0KJYU-JxMAxgrGtb4kVymtARA15xMyX8Tom8G19cbT0MVtol2gW5tj-0P72I2tTFO22acnuvryXdxTu2uo7ftN62xuu126JhfBbpK_OdYp-Xx9Wc3fi-XH22L-vCxcySAXquFgXGPLILlsBMpa1sEzJYJVLtTaeeGYMYKXwVgJjpfgwImGK6wDcFNOyd1h7njX9-BTrtbdEHfjyoohSkChEU8pNNqgNqDkqO4PysUupehD1cd2a-O-Qqj-kqywOiY52oeDTa7N_y-fwL_LWXGT</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>De las Cuevas, Gemma</creator><creator>Cirac, J. Ignacio</creator><creator>Schuch, Norbert</creator><creator>Perez-Garcia, David</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0977-7727</orcidid></search><sort><creationdate>201712</creationdate><title>Irreducible forms of matrix product states: Theory and applications</title><author>De las Cuevas, Gemma ; Cirac, J. Ignacio ; Schuch, Norbert ; Perez-Garcia, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-7d409cda3f646d516b6bfe275fa7cfb8ce5c299543f9a60c430c0c5d471bf0493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antiferromagnetism</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Physics</topic><topic>Symmetry</topic><topic>Tensors</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De las Cuevas, Gemma</creatorcontrib><creatorcontrib>Cirac, J. Ignacio</creatorcontrib><creatorcontrib>Schuch, Norbert</creatorcontrib><creatorcontrib>Perez-Garcia, David</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De las Cuevas, Gemma</au><au>Cirac, J. Ignacio</au><au>Schuch, Norbert</au><au>Perez-Garcia, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irreducible forms of matrix product states: Theory and applications</atitle><jtitle>Journal of mathematical physics</jtitle><date>2017-12</date><risdate>2017</risdate><volume>58</volume><issue>12</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The canonical form of Matrix Product States (MPS) and the associated fundamental theorem, which relates different MPS representations of a state, are the theoretical framework underlying many of the analytical results derived through MPS, such as the classification of symmetry-protected phases in one dimension. Yet, the canonical form is only defined for MPS without non-trivial periods and thus cannot fully capture paradigmatic states such as the antiferromagnet. Here, we introduce a new standard form for MPS, the irreducible form, which is defined for arbitrary MPS, including periodic states, and show that any tensor can be transformed into a tensor in irreducible form describing the same MPS. We then prove a fundamental theorem for MPS in irreducible form: If two tensors in irreducible form give rise to the same MPS, then they must be related by a similarity transform, together with a matrix of phases. We provide two applications of this result: an equivalence between the refinement properties of a state and the divisibility properties of its transfer matrix, and a more general characterisation of tensors that give rise to matrix product states with symmetries.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5000784</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0977-7727</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2017-12, Vol.58 (12), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2116015811
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Antiferromagnetism
Mathematical analysis
Matrix
Matrix methods
Physics
Symmetry
Tensors
Theorems
title Irreducible forms of matrix product states: Theory and applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irreducible%20forms%20of%20matrix%20product%20states:%20Theory%20and%20applications&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=De%20las%20Cuevas,%20Gemma&rft.date=2017-12&rft.volume=58&rft.issue=12&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5000784&rft_dat=%3Cproquest_scita%3E1989189076%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-7d409cda3f646d516b6bfe275fa7cfb8ce5c299543f9a60c430c0c5d471bf0493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989189076&rft_id=info:pmid/&rfr_iscdi=true