Loading…

Generalized exponential stability of differential equations with non-instantaneous impulses

A nonlinear system of differential equations with non-instantaneous impulses is studied. The generalized exponential stability with respect to non-instantaneous impulses is defined. Sufficient conditions by the help with Lyapunov functions are obtained. An appropriate example illustrating the influe...

Full description

Saved in:
Bibliographic Details
Main Authors: Hristova, Snezhana, Ivanova, Krasimira, Kostadinov, Todor
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1910
creator Hristova, Snezhana
Ivanova, Krasimira
Kostadinov, Todor
description A nonlinear system of differential equations with non-instantaneous impulses is studied. The generalized exponential stability with respect to non-instantaneous impulses is defined. Sufficient conditions by the help with Lyapunov functions are obtained. An appropriate example illustrating the influence of non-instantaneous impulses on the stability behavior of the solution is given.
doi_str_mv 10.1063/1.5013972
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116015893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116015893</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-229a3c409248924551a946a68953d57708efaa6a924809dd84ae15dd0df73e543</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCN2Frvjc5StEqFLwoCB5CbBJM2SbbTVZtf72pLXgTZpiB95lPAC4RnCDIyQ2aMIiIbPARGCHGUN1wxI_BCEJJa0zJ6yk4S2kJIZZNI0bgbWaD7XXrt9ZU9ruLwYbsdVulrN996_Omiq4y3jnbHxS7HnT2MaTqy-ePKsRQ-1DwUMzGIVV-1Q1tsukcnDhdkotDHIOX-7vn6UM9f5o9Tm_ndYeFyDXGUpMFhRJTUbwsrSXlmgvJiGFNA4V1WnO906E0RlBtETMGGtcQyygZg6t9366P68GmrJZx6EMZqTBCHCImJCnU9Z5KC59_D1Bd71e636jP2CukDo9TnXH_wQiq3af_CsgPCo5w_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116015893</pqid></control><display><type>conference_proceeding</type><title>Generalized exponential stability of differential equations with non-instantaneous impulses</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hristova, Snezhana ; Ivanova, Krasimira ; Kostadinov, Todor</creator><contributor>Venkov, George ; Pasheva, Vesela ; Popivanov, Nedyu</contributor><creatorcontrib>Hristova, Snezhana ; Ivanova, Krasimira ; Kostadinov, Todor ; Venkov, George ; Pasheva, Vesela ; Popivanov, Nedyu</creatorcontrib><description>A nonlinear system of differential equations with non-instantaneous impulses is studied. The generalized exponential stability with respect to non-instantaneous impulses is defined. Sufficient conditions by the help with Lyapunov functions are obtained. An appropriate example illustrating the influence of non-instantaneous impulses on the stability behavior of the solution is given.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5013972</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differential equations ; Impulses ; Liapunov functions ; Mathematical analysis ; Nonlinear equations ; Nonlinear systems ; Stability</subject><ispartof>AIP conference proceedings, 2017, Vol.1910 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Venkov, George</contributor><contributor>Pasheva, Vesela</contributor><contributor>Popivanov, Nedyu</contributor><creatorcontrib>Hristova, Snezhana</creatorcontrib><creatorcontrib>Ivanova, Krasimira</creatorcontrib><creatorcontrib>Kostadinov, Todor</creatorcontrib><title>Generalized exponential stability of differential equations with non-instantaneous impulses</title><title>AIP conference proceedings</title><description>A nonlinear system of differential equations with non-instantaneous impulses is studied. The generalized exponential stability with respect to non-instantaneous impulses is defined. Sufficient conditions by the help with Lyapunov functions are obtained. An appropriate example illustrating the influence of non-instantaneous impulses on the stability behavior of the solution is given.</description><subject>Differential equations</subject><subject>Impulses</subject><subject>Liapunov functions</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Stability</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCN2Frvjc5StEqFLwoCB5CbBJM2SbbTVZtf72pLXgTZpiB95lPAC4RnCDIyQ2aMIiIbPARGCHGUN1wxI_BCEJJa0zJ6yk4S2kJIZZNI0bgbWaD7XXrt9ZU9ruLwYbsdVulrN996_Omiq4y3jnbHxS7HnT2MaTqy-ePKsRQ-1DwUMzGIVV-1Q1tsukcnDhdkotDHIOX-7vn6UM9f5o9Tm_ndYeFyDXGUpMFhRJTUbwsrSXlmgvJiGFNA4V1WnO906E0RlBtETMGGtcQyygZg6t9366P68GmrJZx6EMZqTBCHCImJCnU9Z5KC59_D1Bd71e636jP2CukDo9TnXH_wQiq3af_CsgPCo5w_Q</recordid><startdate>20171207</startdate><enddate>20171207</enddate><creator>Hristova, Snezhana</creator><creator>Ivanova, Krasimira</creator><creator>Kostadinov, Todor</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171207</creationdate><title>Generalized exponential stability of differential equations with non-instantaneous impulses</title><author>Hristova, Snezhana ; Ivanova, Krasimira ; Kostadinov, Todor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-229a3c409248924551a946a68953d57708efaa6a924809dd84ae15dd0df73e543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Differential equations</topic><topic>Impulses</topic><topic>Liapunov functions</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hristova, Snezhana</creatorcontrib><creatorcontrib>Ivanova, Krasimira</creatorcontrib><creatorcontrib>Kostadinov, Todor</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hristova, Snezhana</au><au>Ivanova, Krasimira</au><au>Kostadinov, Todor</au><au>Venkov, George</au><au>Pasheva, Vesela</au><au>Popivanov, Nedyu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generalized exponential stability of differential equations with non-instantaneous impulses</atitle><btitle>AIP conference proceedings</btitle><date>2017-12-07</date><risdate>2017</risdate><volume>1910</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A nonlinear system of differential equations with non-instantaneous impulses is studied. The generalized exponential stability with respect to non-instantaneous impulses is defined. Sufficient conditions by the help with Lyapunov functions are obtained. An appropriate example illustrating the influence of non-instantaneous impulses on the stability behavior of the solution is given.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5013972</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1910 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116015893
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Differential equations
Impulses
Liapunov functions
Mathematical analysis
Nonlinear equations
Nonlinear systems
Stability
title Generalized exponential stability of differential equations with non-instantaneous impulses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generalized%20exponential%20stability%20of%20differential%20equations%20with%20non-instantaneous%20impulses&rft.btitle=AIP%20conference%20proceedings&rft.au=Hristova,%20Snezhana&rft.date=2017-12-07&rft.volume=1910&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5013972&rft_dat=%3Cproquest_scita%3E2116015893%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p288t-229a3c409248924551a946a68953d57708efaa6a924809dd84ae15dd0df73e543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116015893&rft_id=info:pmid/&rfr_iscdi=true