Loading…

Secretory structure and histochemistry test of some Zingiberaceae plants

A secretory structure is a structure that produces a plant’s metabolite substances. Secretory structures are grouped into an internal and external. Zingiberaceae plants are known as traditional medicine plants and as spice plants due to secretory structures in their tissues. The objective of the res...

Full description

Saved in:
Bibliographic Details
Main Author: Indriyani, Serafinah
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A secretory structure is a structure that produces a plant’s metabolite substances. Secretory structures are grouped into an internal and external. Zingiberaceae plants are known as traditional medicine plants and as spice plants due to secretory structures in their tissues. The objective of the research were to describe the secretory structure of Zingiberaceae plants and to discover the qualitatively primary metabolite substances in plant’s tissues via histochemistry test. The research was conducted by observation descriptive design, quantitative data including the density of secretory cells per mm². The quantitative data were analyzed by ANOVA and continued by Duncan at α = 5 %. The results showed that the secretory structures in leaves, rhizome, and the root of 14 species of Zingiberaceae plants are found in the mesophyll of leaves and cortex, and also pith in rhizome and roots. The type of secretory structure is internal. Within the root of Zingiber cassumunar Roxb.(bengle), Curcuma domestica Val. (kunyit), Curcuma zedoaria (Berg.) Roscoe (kunyit putih), Zingiber zerumbet (L.) J.E. Smith (lempuyang), Alpiniapurpurata K. Schum (lengkuas merah), and Curcuma aeruginosa Val. (temu ireng) were found amylum grains, while in Kaemferia galanga L. (kencur), Boesen bergiapandurata L. (temu kunci), and Curcuma xanthorrhiza Roxb. (temulawak) there were no amylum grains in the root as well as in the leaves. The roots of bengle had the greatest density of amylum grain, it had 248.1 ± 9.8 secretory cells of amylum grains per mm². Lipids (oil droplets) were found in the root of bengle, Zingiber officinale Roxb. Var. emprit (jahe emprit), Zingiber officinale Roxb. Var. Gajah (jahe gajah), Zingiber officinale Roxb. Var. Rubrum (jahe merah), Keampferia angustifolia L. (kunci pepet), kunyit, kunyit putih, lempuyang, lengkua smerah, Curcuma aeruginosa Val. (temu ireng), and Curcuma mangga Val. and van Zijp (temu mangga); the root of lempuyang had the greatest density of oil droplets, it had 10.4 ± 2.1 secretory cells of oil droplets per mm2. All of Zingiberaceae’s root and leaves did not have secretory cells of protein. Zingiberaceae’s rhizomes had amylum grain, protein granules, and oil droplets. Jahe merah’s rhizomes had the greatest density of amylum grain, it had 198.3 ± 21.1 cells of amylum grain per mm2. Jahe emprit’s rhizomes had the greatest density of protein granules, it had254.0 ± 90.0 cells of protein granules per mm². Kunyit putih’s rhizomes had the greatest d
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5012722