Loading…
Charge-transfer excited states: Seeking a balanced and efficient wave function ansatz in variational Monte Carlo
We present a simple and efficient wave function ansatz for the treatment of excited charge-transfer states in real-space quantum Monte Carlo methods. Using the recently introduced variation-after-response method [E. Neuscamman, J. Chem. Phys. 145, 081103 (2016)], this ansatz allows a crucial orbital...
Saved in:
Published in: | The Journal of chemical physics 2017-11, Vol.147 (19), p.194101-194101 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a simple and efficient wave function ansatz for the treatment of excited charge-transfer states in real-space quantum Monte Carlo methods. Using the recently introduced variation-after-response method [E. Neuscamman, J. Chem. Phys. 145, 081103 (2016)], this ansatz allows a crucial orbital optimization step to be performed beyond a configuration interaction singles expansion, while only requiring calculation of two Slater determinant objects. We demonstrate this ansatz for the illustrative example of the stretched LiF molecule, for a range of excited states of formaldehyde, and finally for the more challenging ethylene-tetrafluoroethylene molecule. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4998197 |