Loading…

Delayed thermal depolarization of Bi0.5Na0.5TiO3-BaTiO3 by doping acceptor Zn2+ with large ionic polarizability

In this paper, (Bi0.5Na0.5)0.94Ba0.06Ti1-xZnxO3 ceramics (0 ≤ x ≤ 0.06) were prepared by the solid oxide reaction route. The doping of Zn2+ into Bi0.5Na0.5TiO3-6BaTiO3 delays the crossover from nonergodic to ergodic states, and the thermal depolarization temperature T d is delayed from 85 °C for pur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2017-11, Vol.122 (20)
Main Authors: Li, Ling, Zhu, Mankang, Zhou, Kailing, Wei, Qiumei, Zheng, Mupeng, Hou, Yudong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, (Bi0.5Na0.5)0.94Ba0.06Ti1-xZnxO3 ceramics (0 ≤ x ≤ 0.06) were prepared by the solid oxide reaction route. The doping of Zn2+ into Bi0.5Na0.5TiO3-6BaTiO3 delays the crossover from nonergodic to ergodic states, and the thermal depolarization temperature T d is delayed from 85 °C for pure samples to 120 °C for samples doped by 6% Zn2+, as confirmed by temperature-dependent dielectric and ferroelectric measurements. It suggests that the variation of the T d could be ascribed to the reformation of the long-range ferroelectric order due to the large ionic polarizability of Zn2+. The high ionic polarizability of Zn2+ can result in a large dipole moment of BO6 octahedra, thus strengthening the coherence of neighboring dipoles and suppressing the ferroelectric–relaxor transition. These results improve our understanding on the thermal depolarization of Bi0.5Na0.5TiO3-based ferroelectrics.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5012889