Loading…
GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform
Reconfiguration of silicon photonic integrated circuits relying on the weak, volatile thermo-optic or electro-optic effect of silicon usually suffers from a large footprint and energy consumption. Here, integrating a phase-change material, Ge2Sb2Te5 (GST) with silicon microring resonators, we demons...
Saved in:
Published in: | Optical materials express 2018-06, Vol.8 (6), p.1551 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reconfiguration of silicon photonic integrated circuits relying on the weak, volatile thermo-optic or electro-optic effect of silicon usually suffers from a large footprint and energy consumption. Here, integrating a phase-change material, Ge2Sb2Te5 (GST) with silicon microring resonators, we demonstrate an energy-efficient, compact, non-volatile, reprogrammable platform. By adjusting the energy and number of free-space laser pulses applied to the GST, we characterize the strong broadband attenuation and optical phase modulation effects of the platform, and perform quasi-continuous tuning enabled by thermo-optically-induced phase changes. As a result, a non-volatile optical switch with a high extinction ratio, as large as 33 dB, is demonstrated. |
---|---|
ISSN: | 2159-3930 2159-3930 |
DOI: | 10.1364/OME.8.001551 |