Loading…

Jones matrix description of Fabry-Perot interference in a single axis photo-elastic modulator and the consequences for the magneto-optical measurement method

When using a Photo-elastic modulator (PEM) in combination with a coherent light source, in addition to the modulation of the phase, Fabry-Perot interference in the PEM’s optical head induces large offsets in the 1ω and 2ω detector signals. A Jones matrix which describes both effects simultaneously,...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2017-08, Vol.7 (8), p.085320-085320-14
Main Authors: Talukder, Md. Abdul Ahad, Geerts, Wilhelmus J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When using a Photo-elastic modulator (PEM) in combination with a coherent light source, in addition to the modulation of the phase, Fabry-Perot interference in the PEM’s optical head induces large offsets in the 1ω and 2ω detector signals. A Jones matrix which describes both effects simultaneously, was derived for a single axis PEM and used to find an expression for the detector signal for two different MO Kerr setups. The effect of the PEM tilt angle, polarizer angle, analyzer angle, and retardation, on the detector signal offsets show that offsets can be zeroed by adjusting PEM tilt angle, polarizer angle, and retardation. This strategy will allow one to avoid large offset drifts due to the small retardation, intensity, and beam direction fluctuations caused by lab temperature fluctuations. In addition, it will enable one to measure in the most sensitive range of the lock-in amplifiers further improving the signal to noise ratio of the setup.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.4999517