Loading…

Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts

We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantu...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2017-10, Vol.147 (16), p.161720-161720
Main Authors: Houriez, Céline, Vallet, Valérie, Réal, Florent, Meot-Ner (Mautner), Michael, Masella, Michel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-8b1eb4d1b14b1eca6a32fc2ba66fc478fe49ed9f447fa2121ff65cf2a253a8263
cites cdi_FETCH-LOGICAL-c382t-8b1eb4d1b14b1eca6a32fc2ba66fc478fe49ed9f447fa2121ff65cf2a253a8263
container_end_page 161720
container_issue 16
container_start_page 161720
container_title The Journal of chemical physics
container_volume 147
creator Houriez, Céline
Vallet, Valérie
Réal, Florent
Meot-Ner (Mautner), Michael
Masella, Michel
description We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in C H 3 C O O − / C H 3 N H 3 + solutions at the 0.2–0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the H C O O − / N H 4 + pair and 3.3 ± 1.2 molecules for the CH3COO−/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.
doi_str_mv 10.1063/1.4997996
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116080963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1988268067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-8b1eb4d1b14b1eca6a32fc2ba66fc478fe49ed9f447fa2121ff65cf2a253a8263</originalsourceid><addsrcrecordid>eNp9kUFP3DAQha2Kqiy0h_6ByhKXghTwOI4Tc0OoQKWVuNCzNXHsrlESL3aCyr-v091SiUNPM37-9OyZR8hnYOfAZHkB50KpWin5jqyANaqopWIHZMUYh0JJJg_JUUqPjDGoufhADrliSgpRrcjTffyJozfUh5FiSsF4nJbe5-PTbMOc6HaDyVIcO4pt1n2-L9osddSFaCx13vZduqQPG0vNggaXa2zDr5ceJ3uBwxBGPw80YT-lj-S9wz7ZT_t6TH7cfHu4vivW97ffr6_WhSkbPhVNC7YVHbQgcmdQYsmd4S1K6YyoG2eFsp1yQtQOOXBwTlbGceRViQ2X5TE53flusNfb6AeMLzqg13dXa71oDKpaiUo9Q2a_7thtDHnoNOnBJ2P7HsdlAxpUky0bJuuMnrxBH8McxzyJ5gCSNXmz5b_HTQwpRetefwBML5lp0PvMMvtl7zi3g-1eyb8hZeBsByTjpz_p_MftN6N0niE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116080963</pqid></control><display><type>article</type><title>Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Houriez, Céline ; Vallet, Valérie ; Réal, Florent ; Meot-Ner (Mautner), Michael ; Masella, Michel</creator><creatorcontrib>Houriez, Céline ; Vallet, Valérie ; Réal, Florent ; Meot-Ner (Mautner), Michael ; Masella, Michel</creatorcontrib><description>We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in C H 3 C O O − / C H 3 N H 3 + solutions at the 0.2–0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the H C O O − / N H 4 + pair and 3.3 ± 1.2 molecules for the CH3COO−/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4997996</identifier><identifier>PMID: 29096445</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical Physics ; Computer simulation ; Ion association ; Ion pairs ; Molecular dynamics ; Organic chemistry ; Perturbation theory ; Physics ; Saline solutions ; Water ; Water chemistry</subject><ispartof>The Journal of chemical physics, 2017-10, Vol.147 (16), p.161720-161720</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-8b1eb4d1b14b1eca6a32fc2ba66fc478fe49ed9f447fa2121ff65cf2a253a8263</citedby><cites>FETCH-LOGICAL-c382t-8b1eb4d1b14b1eca6a32fc2ba66fc478fe49ed9f447fa2121ff65cf2a253a8263</cites><orcidid>0000-0003-1073-4457 ; 0000-0002-2202-3858 ; 0000-0002-2525-7721 ; 0000000222023858 ; 0000000225257721 ; 0000000310734457 ; 0000-0002-5163-1545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4997996$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27903,27904,76129</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29096445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01579459$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Houriez, Céline</creatorcontrib><creatorcontrib>Vallet, Valérie</creatorcontrib><creatorcontrib>Réal, Florent</creatorcontrib><creatorcontrib>Meot-Ner (Mautner), Michael</creatorcontrib><creatorcontrib>Masella, Michel</creatorcontrib><title>Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in C H 3 C O O − / C H 3 N H 3 + solutions at the 0.2–0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the H C O O − / N H 4 + pair and 3.3 ± 1.2 molecules for the CH3COO−/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.</description><subject>Chemical Physics</subject><subject>Computer simulation</subject><subject>Ion association</subject><subject>Ion pairs</subject><subject>Molecular dynamics</subject><subject>Organic chemistry</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Saline solutions</subject><subject>Water</subject><subject>Water chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFP3DAQha2Kqiy0h_6ByhKXghTwOI4Tc0OoQKWVuNCzNXHsrlESL3aCyr-v091SiUNPM37-9OyZR8hnYOfAZHkB50KpWin5jqyANaqopWIHZMUYh0JJJg_JUUqPjDGoufhADrliSgpRrcjTffyJozfUh5FiSsF4nJbe5-PTbMOc6HaDyVIcO4pt1n2-L9osddSFaCx13vZduqQPG0vNggaXa2zDr5ceJ3uBwxBGPw80YT-lj-S9wz7ZT_t6TH7cfHu4vivW97ffr6_WhSkbPhVNC7YVHbQgcmdQYsmd4S1K6YyoG2eFsp1yQtQOOXBwTlbGceRViQ2X5TE53flusNfb6AeMLzqg13dXa71oDKpaiUo9Q2a_7thtDHnoNOnBJ2P7HsdlAxpUky0bJuuMnrxBH8McxzyJ5gCSNXmz5b_HTQwpRetefwBML5lp0PvMMvtl7zi3g-1eyb8hZeBsByTjpz_p_MftN6N0niE</recordid><startdate>20171028</startdate><enddate>20171028</enddate><creator>Houriez, Céline</creator><creator>Vallet, Valérie</creator><creator>Réal, Florent</creator><creator>Meot-Ner (Mautner), Michael</creator><creator>Masella, Michel</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1073-4457</orcidid><orcidid>https://orcid.org/0000-0002-2202-3858</orcidid><orcidid>https://orcid.org/0000-0002-2525-7721</orcidid><orcidid>https://orcid.org/0000000222023858</orcidid><orcidid>https://orcid.org/0000000225257721</orcidid><orcidid>https://orcid.org/0000000310734457</orcidid><orcidid>https://orcid.org/0000-0002-5163-1545</orcidid></search><sort><creationdate>20171028</creationdate><title>Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts</title><author>Houriez, Céline ; Vallet, Valérie ; Réal, Florent ; Meot-Ner (Mautner), Michael ; Masella, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-8b1eb4d1b14b1eca6a32fc2ba66fc478fe49ed9f447fa2121ff65cf2a253a8263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical Physics</topic><topic>Computer simulation</topic><topic>Ion association</topic><topic>Ion pairs</topic><topic>Molecular dynamics</topic><topic>Organic chemistry</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Saline solutions</topic><topic>Water</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houriez, Céline</creatorcontrib><creatorcontrib>Vallet, Valérie</creatorcontrib><creatorcontrib>Réal, Florent</creatorcontrib><creatorcontrib>Meot-Ner (Mautner), Michael</creatorcontrib><creatorcontrib>Masella, Michel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houriez, Céline</au><au>Vallet, Valérie</au><au>Réal, Florent</au><au>Meot-Ner (Mautner), Michael</au><au>Masella, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2017-10-28</date><risdate>2017</risdate><volume>147</volume><issue>16</issue><spage>161720</spage><epage>161720</epage><pages>161720-161720</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in C H 3 C O O − / C H 3 N H 3 + solutions at the 0.2–0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the H C O O − / N H 4 + pair and 3.3 ± 1.2 molecules for the CH3COO−/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29096445</pmid><doi>10.1063/1.4997996</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1073-4457</orcidid><orcidid>https://orcid.org/0000-0002-2202-3858</orcidid><orcidid>https://orcid.org/0000-0002-2525-7721</orcidid><orcidid>https://orcid.org/0000000222023858</orcidid><orcidid>https://orcid.org/0000000225257721</orcidid><orcidid>https://orcid.org/0000000310734457</orcidid><orcidid>https://orcid.org/0000-0002-5163-1545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2017-10, Vol.147 (16), p.161720-161720
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2116080963
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Chemical Physics
Computer simulation
Ion association
Ion pairs
Molecular dynamics
Organic chemistry
Perturbation theory
Physics
Saline solutions
Water
Water chemistry
title Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20ion%20association%20in%20aqueous%20phase%20and%20ab%20initio-based%20force%20fields:%20The%20case%20of%20carboxylate/ammonium%20salts&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Houriez,%20C%C3%A9line&rft.date=2017-10-28&rft.volume=147&rft.issue=16&rft.spage=161720&rft.epage=161720&rft.pages=161720-161720&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4997996&rft_dat=%3Cproquest_cross%3E1988268067%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-8b1eb4d1b14b1eca6a32fc2ba66fc478fe49ed9f447fa2121ff65cf2a253a8263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116080963&rft_id=info:pmid/29096445&rfr_iscdi=true