Loading…
A platform for studying the Rayleigh–Taylor and Richtmyer–Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility
A new experimental platform has been developed at the National Ignition Facility (NIF) for studying the Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities in a planar geometry at high-energy-densities. The platform uses 60 beams of the NIF laser to drive an initially solid shock tube cont...
Saved in:
Published in: | Physics of plasmas 2017-07, Vol.24 (7) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new experimental platform has been developed at the National Ignition Facility (NIF) for studying the Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities in a planar geometry at high-energy-densities. The platform uses 60 beams of the NIF laser to drive an initially solid shock tube containing a pre-machined interface between dense and light materials. The strong shock turns the initially solid target into a plasma and the material boundary into a fluid interface with the imprinted initial condition. The interface evolves by action of the RT and RM instabilities, and the growth is imaged with backlit x-ray radiography. We present our first data involving sinusoidal interface perturbations driven from the heavy side to the light side. Late-time radiographic images show the initial conditions reaching the deeply nonlinear regime, and an evolution of fine structure consistent with a transition to turbulence. We show preliminary comparisons with post-shot numerical simulations and discuss the implications for future campaigns. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4985312 |