Loading…

Magnetotelluric (MT) data smoothing based on B-Spline algorithm and qualitative spectral analysis

Data processing is one of the essential steps to obtain optimum response function of the Earth’s subsurface. The MT Data processing is based on the Fast Fourier Transform (FFT) algorithm which converts the time series data into its frequency domain counterpart. The FFT combined with statistical algo...

Full description

Saved in:
Bibliographic Details
Main Authors: Handyarso, Accep, Grandis, Hendra
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Data processing is one of the essential steps to obtain optimum response function of the Earth’s subsurface. The MT Data processing is based on the Fast Fourier Transform (FFT) algorithm which converts the time series data into its frequency domain counterpart. The FFT combined with statistical algorithm constitute the Robust Processing algorithm which is widely implemented in MT data processing software. The Robust Processing has three variants, i.e. No Weight (NW), Rho Variance (RV), and Ordinary Coherency (OC). The RV and OC options allow for denoising the data but in many cases the Robust Processing still results in not so smooth sounding curve due to strong noise presence during measurement, such that the Crosspower (XPR) analysis must be conducted in the data processing. The XPR analysis is very time consuming step within the data processing. The collaboration of B-Spline algorithm and Qualitative Spectral Analysis in the frequency domain could be of advantages as an alternative for these steps. The technique is started by using the best coherency from the Robust Processing results. In the Qualitative Spectral Analysis one can determine which part of the data based on frequency that is more or less reliable, then the next process invokes B-Spline algorithm for data smoothing. This algorithm would select the best fit of the data trend in the frequency domain. The smooth apparent resistivity and phase sounding curves can be considered as more appropriate to represent the subsurface. This algorithm has been applied to the real MT data from several survey and give satisfactory results.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4990938