Loading…

An effective convolutional neural network model for Chinese sentiment analysis

Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Yu, Chen, Mengdong, Liu, Lianzhong, Wang, Yadong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1836
creator Zhang, Yu
Chen, Mengdong
Liu, Lianzhong
Wang, Yadong
description Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo’s sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.
doi_str_mv 10.1063/1.4982025
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116117953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116117953</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-9138929b1f204ce5fa515ed936aeba86dc8f42d3b4ec966db6d4b58b0bbb74993</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszeRrk2MpfkHRi4K3kOwmuLXdrMlupf_e1Ra8eZn38jDMvAhdApkBkewGZlwrSqg4QhMQAopSgjxGE0I0Lyhnb6foLOcVIVSXpZqgp3mLfQi-6putx1Vst3E99E1s7Rq3fki_0X_F9IE3sfZrHGLCi_em9dnj7Nu-2YwD29HvcpPP0Umw6-wvDjlFr3e3L4uHYvl8_7iYL4uOKtUXGpjSVDsIlPDKi2AFCF9rJq13Vsm6UoHTmjnuKy1l7WTNnVCOOOdKrjWboqv93i7Fz8Hn3qzikMYjsqEAEqDUgo3qeq9y1fT25yvTpWZj084AMT99GTCHvv7D25j-oOnqwL4BNCJssg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116117953</pqid></control><display><type>conference_proceeding</type><title>An effective convolutional neural network model for Chinese sentiment analysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Zhang, Yu ; Chen, Mengdong ; Liu, Lianzhong ; Wang, Yadong</creator><contributor>Ntalianis, Klimis</contributor><creatorcontrib>Zhang, Yu ; Chen, Mengdong ; Liu, Lianzhong ; Wang, Yadong ; Ntalianis, Klimis</creatorcontrib><description>Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo’s sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4982025</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Data mining ; Embedding ; Neural networks ; Sentiment analysis</subject><ispartof>AIP conference proceedings, 2017, Vol.1836 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Ntalianis, Klimis</contributor><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Chen, Mengdong</creatorcontrib><creatorcontrib>Liu, Lianzhong</creatorcontrib><creatorcontrib>Wang, Yadong</creatorcontrib><title>An effective convolutional neural network model for Chinese sentiment analysis</title><title>AIP conference proceedings</title><description>Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo’s sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.</description><subject>Artificial neural networks</subject><subject>Data mining</subject><subject>Embedding</subject><subject>Neural networks</subject><subject>Sentiment analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszeRrk2MpfkHRi4K3kOwmuLXdrMlupf_e1Ra8eZn38jDMvAhdApkBkewGZlwrSqg4QhMQAopSgjxGE0I0Lyhnb6foLOcVIVSXpZqgp3mLfQi-6putx1Vst3E99E1s7Rq3fki_0X_F9IE3sfZrHGLCi_em9dnj7Nu-2YwD29HvcpPP0Umw6-wvDjlFr3e3L4uHYvl8_7iYL4uOKtUXGpjSVDsIlPDKi2AFCF9rJq13Vsm6UoHTmjnuKy1l7WTNnVCOOOdKrjWboqv93i7Fz8Hn3qzikMYjsqEAEqDUgo3qeq9y1fT25yvTpWZj084AMT99GTCHvv7D25j-oOnqwL4BNCJssg</recordid><startdate>20170605</startdate><enddate>20170605</enddate><creator>Zhang, Yu</creator><creator>Chen, Mengdong</creator><creator>Liu, Lianzhong</creator><creator>Wang, Yadong</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170605</creationdate><title>An effective convolutional neural network model for Chinese sentiment analysis</title><author>Zhang, Yu ; Chen, Mengdong ; Liu, Lianzhong ; Wang, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-9138929b1f204ce5fa515ed936aeba86dc8f42d3b4ec966db6d4b58b0bbb74993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Data mining</topic><topic>Embedding</topic><topic>Neural networks</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Chen, Mengdong</creatorcontrib><creatorcontrib>Liu, Lianzhong</creatorcontrib><creatorcontrib>Wang, Yadong</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yu</au><au>Chen, Mengdong</au><au>Liu, Lianzhong</au><au>Wang, Yadong</au><au>Ntalianis, Klimis</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An effective convolutional neural network model for Chinese sentiment analysis</atitle><btitle>AIP conference proceedings</btitle><date>2017-06-05</date><risdate>2017</risdate><volume>1836</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo’s sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4982025</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1836 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116117953
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Artificial neural networks
Data mining
Embedding
Neural networks
Sentiment analysis
title An effective convolutional neural network model for Chinese sentiment analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20effective%20convolutional%20neural%20network%20model%20for%20Chinese%20sentiment%20analysis&rft.btitle=AIP%20conference%20proceedings&rft.au=Zhang,%20Yu&rft.date=2017-06-05&rft.volume=1836&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4982025&rft_dat=%3Cproquest_scita%3E2116117953%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p288t-9138929b1f204ce5fa515ed936aeba86dc8f42d3b4ec966db6d4b58b0bbb74993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116117953&rft_id=info:pmid/&rfr_iscdi=true