Loading…
An effective convolutional neural network model for Chinese sentiment analysis
Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1836 |
creator | Zhang, Yu Chen, Mengdong Liu, Lianzhong Wang, Yadong |
description | Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo’s sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task. |
doi_str_mv | 10.1063/1.4982025 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116117953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116117953</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-9138929b1f204ce5fa515ed936aeba86dc8f42d3b4ec966db6d4b58b0bbb74993</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszeRrk2MpfkHRi4K3kOwmuLXdrMlupf_e1Ra8eZn38jDMvAhdApkBkewGZlwrSqg4QhMQAopSgjxGE0I0Lyhnb6foLOcVIVSXpZqgp3mLfQi-6putx1Vst3E99E1s7Rq3fki_0X_F9IE3sfZrHGLCi_em9dnj7Nu-2YwD29HvcpPP0Umw6-wvDjlFr3e3L4uHYvl8_7iYL4uOKtUXGpjSVDsIlPDKi2AFCF9rJq13Vsm6UoHTmjnuKy1l7WTNnVCOOOdKrjWboqv93i7Fz8Hn3qzikMYjsqEAEqDUgo3qeq9y1fT25yvTpWZj084AMT99GTCHvv7D25j-oOnqwL4BNCJssg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116117953</pqid></control><display><type>conference_proceeding</type><title>An effective convolutional neural network model for Chinese sentiment analysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Zhang, Yu ; Chen, Mengdong ; Liu, Lianzhong ; Wang, Yadong</creator><contributor>Ntalianis, Klimis</contributor><creatorcontrib>Zhang, Yu ; Chen, Mengdong ; Liu, Lianzhong ; Wang, Yadong ; Ntalianis, Klimis</creatorcontrib><description>Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo’s sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4982025</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Data mining ; Embedding ; Neural networks ; Sentiment analysis</subject><ispartof>AIP conference proceedings, 2017, Vol.1836 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Ntalianis, Klimis</contributor><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Chen, Mengdong</creatorcontrib><creatorcontrib>Liu, Lianzhong</creatorcontrib><creatorcontrib>Wang, Yadong</creatorcontrib><title>An effective convolutional neural network model for Chinese sentiment analysis</title><title>AIP conference proceedings</title><description>Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo’s sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.</description><subject>Artificial neural networks</subject><subject>Data mining</subject><subject>Embedding</subject><subject>Neural networks</subject><subject>Sentiment analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszeRrk2MpfkHRi4K3kOwmuLXdrMlupf_e1Ra8eZn38jDMvAhdApkBkewGZlwrSqg4QhMQAopSgjxGE0I0Lyhnb6foLOcVIVSXpZqgp3mLfQi-6putx1Vst3E99E1s7Rq3fki_0X_F9IE3sfZrHGLCi_em9dnj7Nu-2YwD29HvcpPP0Umw6-wvDjlFr3e3L4uHYvl8_7iYL4uOKtUXGpjSVDsIlPDKi2AFCF9rJq13Vsm6UoHTmjnuKy1l7WTNnVCOOOdKrjWboqv93i7Fz8Hn3qzikMYjsqEAEqDUgo3qeq9y1fT25yvTpWZj084AMT99GTCHvv7D25j-oOnqwL4BNCJssg</recordid><startdate>20170605</startdate><enddate>20170605</enddate><creator>Zhang, Yu</creator><creator>Chen, Mengdong</creator><creator>Liu, Lianzhong</creator><creator>Wang, Yadong</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170605</creationdate><title>An effective convolutional neural network model for Chinese sentiment analysis</title><author>Zhang, Yu ; Chen, Mengdong ; Liu, Lianzhong ; Wang, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-9138929b1f204ce5fa515ed936aeba86dc8f42d3b4ec966db6d4b58b0bbb74993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Data mining</topic><topic>Embedding</topic><topic>Neural networks</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Chen, Mengdong</creatorcontrib><creatorcontrib>Liu, Lianzhong</creatorcontrib><creatorcontrib>Wang, Yadong</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yu</au><au>Chen, Mengdong</au><au>Liu, Lianzhong</au><au>Wang, Yadong</au><au>Ntalianis, Klimis</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An effective convolutional neural network model for Chinese sentiment analysis</atitle><btitle>AIP conference proceedings</btitle><date>2017-06-05</date><risdate>2017</risdate><volume>1836</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo’s sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4982025</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1836 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2116117953 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Artificial neural networks Data mining Embedding Neural networks Sentiment analysis |
title | An effective convolutional neural network model for Chinese sentiment analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20effective%20convolutional%20neural%20network%20model%20for%20Chinese%20sentiment%20analysis&rft.btitle=AIP%20conference%20proceedings&rft.au=Zhang,%20Yu&rft.date=2017-06-05&rft.volume=1836&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4982025&rft_dat=%3Cproquest_scita%3E2116117953%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p288t-9138929b1f204ce5fa515ed936aeba86dc8f42d3b4ec966db6d4b58b0bbb74993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116117953&rft_id=info:pmid/&rfr_iscdi=true |