Loading…

A Self-Stabilizing Algorithm for a Maximal 2-Packing in a Cactus Graph Under Any Scheduler

In this paper, we present a self-stabilizing algorithm that computes a maximal 2-packing set in a cactus under the adversarial scheduler. The cactus is a network topology such that any edge belongs to at most one cycle. The cactus has important applications in telecommunication networks, location pr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of foundations of computer science 2017-12, Vol.28 (8), p.1021-1045
Main Authors: Trejo-Sánchez, Joel Antonio, Fernández-Zepeda, José Alberto, Ramírez-Pacheco, Julio César
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314X-1a301d819fe3b1f505f16c374b573012e9928405d015756e4e206af6e3db951c3
cites cdi_FETCH-LOGICAL-c314X-1a301d819fe3b1f505f16c374b573012e9928405d015756e4e206af6e3db951c3
container_end_page 1045
container_issue 8
container_start_page 1021
container_title International journal of foundations of computer science
container_volume 28
creator Trejo-Sánchez, Joel Antonio
Fernández-Zepeda, José Alberto
Ramírez-Pacheco, Julio César
description In this paper, we present a self-stabilizing algorithm that computes a maximal 2-packing set in a cactus under the adversarial scheduler. The cactus is a network topology such that any edge belongs to at most one cycle. The cactus has important applications in telecommunication networks, location problems, and biotechnology, among others. We assume that the value of each vertex identifier can take any value of length O ( log n ) bits. The execution time of this algorithm is O ( n ) rounds or O ( n 2 ) time steps. Our algorithm matches the state of the art results for this problem, following an entirely different approach. Our approach allows the computation of the maximum 2-packing when the cactus is a ring.
doi_str_mv 10.1142/S012905411750037X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116146043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116146043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314X-1a301d819fe3b1f505f16c374b573012e9928405d015756e4e206af6e3db951c3</originalsourceid><addsrcrecordid>eNplkE9Lw0AQxRdRsNR-AG8LnqM7-y_NMRSthYpCLBQvYbPZbVfTpO4maP30JlS89DQw7_1meA-hayC3AJzeZQRoQgQHiAUhLF6foRHECYski9k5Gg1yNOiXaBKCKwgkkgkq5Ai9pTgzlY2yVhWucj-u3uC02jTetdsdto3HCj-pb7dTFabRi9Ifg8PV_XqmdNsFPPdqv8WrujQep_UBZ3pryq4y_gpdWFUFM_mbY7R6uH-dPUbL5_lili4jzYCvI1CMQDmFxBpWgBVEWJCaxbwQca9QkyR0yokoCYhYSMMNJVJZaVhZJAI0G6Ob4929bz47E9r8vel83b_MKYAELglnvQuOLu2bELyx-d73qfwhB5IPLeYnLfYMOTJfja_KoJ2pW2ed_kdPkV9p0nE_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116146043</pqid></control><display><type>article</type><title>A Self-Stabilizing Algorithm for a Maximal 2-Packing in a Cactus Graph Under Any Scheduler</title><source>TRIAL: World Scientific Journals</source><creator>Trejo-Sánchez, Joel Antonio ; Fernández-Zepeda, José Alberto ; Ramírez-Pacheco, Julio César</creator><creatorcontrib>Trejo-Sánchez, Joel Antonio ; Fernández-Zepeda, José Alberto ; Ramírez-Pacheco, Julio César</creatorcontrib><description>In this paper, we present a self-stabilizing algorithm that computes a maximal 2-packing set in a cactus under the adversarial scheduler. The cactus is a network topology such that any edge belongs to at most one cycle. The cactus has important applications in telecommunication networks, location problems, and biotechnology, among others. We assume that the value of each vertex identifier can take any value of length O ( log n ) bits. The execution time of this algorithm is O ( n ) rounds or O ( n 2 ) time steps. Our algorithm matches the state of the art results for this problem, following an entirely different approach. Our approach allows the computation of the maximum 2-packing when the cactus is a ring.</description><identifier>ISSN: 0129-0541</identifier><identifier>EISSN: 1793-6373</identifier><identifier>DOI: 10.1142/S012905411750037X</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Algorithms</subject><ispartof>International journal of foundations of computer science, 2017-12, Vol.28 (8), p.1021-1045</ispartof><rights>2017, World Scientific Publishing Company</rights><rights>2017. World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314X-1a301d819fe3b1f505f16c374b573012e9928405d015756e4e206af6e3db951c3</citedby><cites>FETCH-LOGICAL-c314X-1a301d819fe3b1f505f16c374b573012e9928405d015756e4e206af6e3db951c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S012905411750037X$$EPDF$$P50$$Gworldscientific$$H</linktopdf><link.rule.ids>314,780,784,3213,4872,27924,27925,55587</link.rule.ids></links><search><creatorcontrib>Trejo-Sánchez, Joel Antonio</creatorcontrib><creatorcontrib>Fernández-Zepeda, José Alberto</creatorcontrib><creatorcontrib>Ramírez-Pacheco, Julio César</creatorcontrib><title>A Self-Stabilizing Algorithm for a Maximal 2-Packing in a Cactus Graph Under Any Scheduler</title><title>International journal of foundations of computer science</title><description>In this paper, we present a self-stabilizing algorithm that computes a maximal 2-packing set in a cactus under the adversarial scheduler. The cactus is a network topology such that any edge belongs to at most one cycle. The cactus has important applications in telecommunication networks, location problems, and biotechnology, among others. We assume that the value of each vertex identifier can take any value of length O ( log n ) bits. The execution time of this algorithm is O ( n ) rounds or O ( n 2 ) time steps. Our algorithm matches the state of the art results for this problem, following an entirely different approach. Our approach allows the computation of the maximum 2-packing when the cactus is a ring.</description><subject>Algorithms</subject><issn>0129-0541</issn><issn>1793-6373</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNplkE9Lw0AQxRdRsNR-AG8LnqM7-y_NMRSthYpCLBQvYbPZbVfTpO4maP30JlS89DQw7_1meA-hayC3AJzeZQRoQgQHiAUhLF6foRHECYski9k5Gg1yNOiXaBKCKwgkkgkq5Ai9pTgzlY2yVhWucj-u3uC02jTetdsdto3HCj-pb7dTFabRi9Ifg8PV_XqmdNsFPPdqv8WrujQep_UBZ3pryq4y_gpdWFUFM_mbY7R6uH-dPUbL5_lili4jzYCvI1CMQDmFxBpWgBVEWJCaxbwQca9QkyR0yokoCYhYSMMNJVJZaVhZJAI0G6Ob4929bz47E9r8vel83b_MKYAELglnvQuOLu2bELyx-d73qfwhB5IPLeYnLfYMOTJfja_KoJ2pW2ed_kdPkV9p0nE_</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Trejo-Sánchez, Joel Antonio</creator><creator>Fernández-Zepeda, José Alberto</creator><creator>Ramírez-Pacheco, Julio César</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201712</creationdate><title>A Self-Stabilizing Algorithm for a Maximal 2-Packing in a Cactus Graph Under Any Scheduler</title><author>Trejo-Sánchez, Joel Antonio ; Fernández-Zepeda, José Alberto ; Ramírez-Pacheco, Julio César</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314X-1a301d819fe3b1f505f16c374b573012e9928405d015756e4e206af6e3db951c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trejo-Sánchez, Joel Antonio</creatorcontrib><creatorcontrib>Fernández-Zepeda, José Alberto</creatorcontrib><creatorcontrib>Ramírez-Pacheco, Julio César</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of foundations of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trejo-Sánchez, Joel Antonio</au><au>Fernández-Zepeda, José Alberto</au><au>Ramírez-Pacheco, Julio César</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Self-Stabilizing Algorithm for a Maximal 2-Packing in a Cactus Graph Under Any Scheduler</atitle><jtitle>International journal of foundations of computer science</jtitle><date>2017-12</date><risdate>2017</risdate><volume>28</volume><issue>8</issue><spage>1021</spage><epage>1045</epage><pages>1021-1045</pages><issn>0129-0541</issn><eissn>1793-6373</eissn><abstract>In this paper, we present a self-stabilizing algorithm that computes a maximal 2-packing set in a cactus under the adversarial scheduler. The cactus is a network topology such that any edge belongs to at most one cycle. The cactus has important applications in telecommunication networks, location problems, and biotechnology, among others. We assume that the value of each vertex identifier can take any value of length O ( log n ) bits. The execution time of this algorithm is O ( n ) rounds or O ( n 2 ) time steps. Our algorithm matches the state of the art results for this problem, following an entirely different approach. Our approach allows the computation of the maximum 2-packing when the cactus is a ring.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S012905411750037X</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0129-0541
ispartof International journal of foundations of computer science, 2017-12, Vol.28 (8), p.1021-1045
issn 0129-0541
1793-6373
language eng
recordid cdi_proquest_journals_2116146043
source TRIAL: World Scientific Journals
subjects Algorithms
title A Self-Stabilizing Algorithm for a Maximal 2-Packing in a Cactus Graph Under Any Scheduler
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Self-Stabilizing%20Algorithm%20for%20a%20Maximal%202-Packing%20in%20a%20Cactus%20Graph%20Under%20Any%20Scheduler&rft.jtitle=International%20journal%20of%20foundations%20of%20computer%20science&rft.au=Trejo-S%C3%A1nchez,%20Joel%20Antonio&rft.date=2017-12&rft.volume=28&rft.issue=8&rft.spage=1021&rft.epage=1045&rft.pages=1021-1045&rft.issn=0129-0541&rft.eissn=1793-6373&rft_id=info:doi/10.1142/S012905411750037X&rft_dat=%3Cproquest_cross%3E2116146043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314X-1a301d819fe3b1f505f16c374b573012e9928405d015756e4e206af6e3db951c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116146043&rft_id=info:pmid/&rfr_iscdi=true