Loading…
2018 Low-Power Image Recognition Challenge
The Low-Power Image Recognition Challenge (LPIRC, https://rebootingcomputing.ieee.org/lpirc) is an annual competition started in 2015. The competition identifies the best technologies that can classify and detect objects in images efficiently (short execution time and low energy consumption) and acc...
Saved in:
Published in: | arXiv.org 2018-10 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alyamkin, Sergei Ardi, Matthew Brighton, Achille Berg, Alexander C Chen, Yiran Hsin-Pai, Cheng Chen, Bo Fan, Zichen Chen, Feng Fu, Bo Gauen, Kent Go, Jongkook Goncharenko, Alexander Guo, Xuyang Nguyen, Hong Hanh Howard, Andrew Huang, Yuanjun Kang, Donghyun Kim, Jaeyoun Kondratyev, Alexander Lee, Seungjae Lee, Suwoong Lee, Junhyeok Liang, Zhiyu Liu, Xin Liu, Juzheng Li, Zichao Lu, Yang Lu, Yung-Hsiang Malik, Deeptanshu Park, Eunbyung Repin, Denis Sheng, Tao Shen, Liang Sun, Fei Svitov, David Thiruvathukal, George K Zhang, Baiwu Zhang, Jingchi Zhang, Xiaopeng Zhuo, Shaojie |
description | The Low-Power Image Recognition Challenge (LPIRC, https://rebootingcomputing.ieee.org/lpirc) is an annual competition started in 2015. The competition identifies the best technologies that can classify and detect objects in images efficiently (short execution time and low energy consumption) and accurately (high precision). Over the four years, the winners' scores have improved more than 24 times. As computer vision is widely used in many battery-powered systems (such as drones and mobile phones), the need for low-power computer vision will become increasingly important. This paper summarizes LPIRC 2018 by describing the three different tracks and the winners' solutions. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2116269974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116269974</sourcerecordid><originalsourceid>FETCH-proquest_journals_21162699743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQMjIwtFDwyS_XDcgvTy1S8MxNTE9VCEpNzk_PyyzJzM9TcM5IzMlJzUtP5WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNDQzMjM0tLcxNj4lQBAHRSL6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116269974</pqid></control><display><type>article</type><title>2018 Low-Power Image Recognition Challenge</title><source>Publicly Available Content Database</source><creator>Alyamkin, Sergei ; Ardi, Matthew ; Brighton, Achille ; Berg, Alexander C ; Chen, Yiran ; Hsin-Pai, Cheng ; Chen, Bo ; Fan, Zichen ; Chen, Feng ; Fu, Bo ; Gauen, Kent ; Go, Jongkook ; Goncharenko, Alexander ; Guo, Xuyang ; Nguyen, Hong Hanh ; Howard, Andrew ; Huang, Yuanjun ; Kang, Donghyun ; Kim, Jaeyoun ; Kondratyev, Alexander ; Lee, Seungjae ; Lee, Suwoong ; Lee, Junhyeok ; Liang, Zhiyu ; Liu, Xin ; Liu, Juzheng ; Li, Zichao ; Lu, Yang ; Lu, Yung-Hsiang ; Malik, Deeptanshu ; Park, Eunbyung ; Repin, Denis ; Sheng, Tao ; Shen, Liang ; Sun, Fei ; Svitov, David ; Thiruvathukal, George K ; Zhang, Baiwu ; Zhang, Jingchi ; Zhang, Xiaopeng ; Zhuo, Shaojie</creator><creatorcontrib>Alyamkin, Sergei ; Ardi, Matthew ; Brighton, Achille ; Berg, Alexander C ; Chen, Yiran ; Hsin-Pai, Cheng ; Chen, Bo ; Fan, Zichen ; Chen, Feng ; Fu, Bo ; Gauen, Kent ; Go, Jongkook ; Goncharenko, Alexander ; Guo, Xuyang ; Nguyen, Hong Hanh ; Howard, Andrew ; Huang, Yuanjun ; Kang, Donghyun ; Kim, Jaeyoun ; Kondratyev, Alexander ; Lee, Seungjae ; Lee, Suwoong ; Lee, Junhyeok ; Liang, Zhiyu ; Liu, Xin ; Liu, Juzheng ; Li, Zichao ; Lu, Yang ; Lu, Yung-Hsiang ; Malik, Deeptanshu ; Park, Eunbyung ; Repin, Denis ; Sheng, Tao ; Shen, Liang ; Sun, Fei ; Svitov, David ; Thiruvathukal, George K ; Zhang, Baiwu ; Zhang, Jingchi ; Zhang, Xiaopeng ; Zhuo, Shaojie</creatorcontrib><description>The Low-Power Image Recognition Challenge (LPIRC, https://rebootingcomputing.ieee.org/lpirc) is an annual competition started in 2015. The competition identifies the best technologies that can classify and detect objects in images efficiently (short execution time and low energy consumption) and accurately (high precision). Over the four years, the winners' scores have improved more than 24 times. As computer vision is widely used in many battery-powered systems (such as drones and mobile phones), the need for low-power computer vision will become increasingly important. This paper summarizes LPIRC 2018 by describing the three different tracks and the winners' solutions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Batteries ; Cameras ; Competition ; Computer vision ; Energy consumption ; Image classification ; Image detection ; Object recognition</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2116269974?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Alyamkin, Sergei</creatorcontrib><creatorcontrib>Ardi, Matthew</creatorcontrib><creatorcontrib>Brighton, Achille</creatorcontrib><creatorcontrib>Berg, Alexander C</creatorcontrib><creatorcontrib>Chen, Yiran</creatorcontrib><creatorcontrib>Hsin-Pai, Cheng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Fan, Zichen</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Fu, Bo</creatorcontrib><creatorcontrib>Gauen, Kent</creatorcontrib><creatorcontrib>Go, Jongkook</creatorcontrib><creatorcontrib>Goncharenko, Alexander</creatorcontrib><creatorcontrib>Guo, Xuyang</creatorcontrib><creatorcontrib>Nguyen, Hong Hanh</creatorcontrib><creatorcontrib>Howard, Andrew</creatorcontrib><creatorcontrib>Huang, Yuanjun</creatorcontrib><creatorcontrib>Kang, Donghyun</creatorcontrib><creatorcontrib>Kim, Jaeyoun</creatorcontrib><creatorcontrib>Kondratyev, Alexander</creatorcontrib><creatorcontrib>Lee, Seungjae</creatorcontrib><creatorcontrib>Lee, Suwoong</creatorcontrib><creatorcontrib>Lee, Junhyeok</creatorcontrib><creatorcontrib>Liang, Zhiyu</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Liu, Juzheng</creatorcontrib><creatorcontrib>Li, Zichao</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Lu, Yung-Hsiang</creatorcontrib><creatorcontrib>Malik, Deeptanshu</creatorcontrib><creatorcontrib>Park, Eunbyung</creatorcontrib><creatorcontrib>Repin, Denis</creatorcontrib><creatorcontrib>Sheng, Tao</creatorcontrib><creatorcontrib>Shen, Liang</creatorcontrib><creatorcontrib>Sun, Fei</creatorcontrib><creatorcontrib>Svitov, David</creatorcontrib><creatorcontrib>Thiruvathukal, George K</creatorcontrib><creatorcontrib>Zhang, Baiwu</creatorcontrib><creatorcontrib>Zhang, Jingchi</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><creatorcontrib>Zhuo, Shaojie</creatorcontrib><title>2018 Low-Power Image Recognition Challenge</title><title>arXiv.org</title><description>The Low-Power Image Recognition Challenge (LPIRC, https://rebootingcomputing.ieee.org/lpirc) is an annual competition started in 2015. The competition identifies the best technologies that can classify and detect objects in images efficiently (short execution time and low energy consumption) and accurately (high precision). Over the four years, the winners' scores have improved more than 24 times. As computer vision is widely used in many battery-powered systems (such as drones and mobile phones), the need for low-power computer vision will become increasingly important. This paper summarizes LPIRC 2018 by describing the three different tracks and the winners' solutions.</description><subject>Batteries</subject><subject>Cameras</subject><subject>Competition</subject><subject>Computer vision</subject><subject>Energy consumption</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Object recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQMjIwtFDwyS_XDcgvTy1S8MxNTE9VCEpNzk_PyyzJzM9TcM5IzMlJzUtP5WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNDQzMjM0tLcxNj4lQBAHRSL6s</recordid><startdate>20181003</startdate><enddate>20181003</enddate><creator>Alyamkin, Sergei</creator><creator>Ardi, Matthew</creator><creator>Brighton, Achille</creator><creator>Berg, Alexander C</creator><creator>Chen, Yiran</creator><creator>Hsin-Pai, Cheng</creator><creator>Chen, Bo</creator><creator>Fan, Zichen</creator><creator>Chen, Feng</creator><creator>Fu, Bo</creator><creator>Gauen, Kent</creator><creator>Go, Jongkook</creator><creator>Goncharenko, Alexander</creator><creator>Guo, Xuyang</creator><creator>Nguyen, Hong Hanh</creator><creator>Howard, Andrew</creator><creator>Huang, Yuanjun</creator><creator>Kang, Donghyun</creator><creator>Kim, Jaeyoun</creator><creator>Kondratyev, Alexander</creator><creator>Lee, Seungjae</creator><creator>Lee, Suwoong</creator><creator>Lee, Junhyeok</creator><creator>Liang, Zhiyu</creator><creator>Liu, Xin</creator><creator>Liu, Juzheng</creator><creator>Li, Zichao</creator><creator>Lu, Yang</creator><creator>Lu, Yung-Hsiang</creator><creator>Malik, Deeptanshu</creator><creator>Park, Eunbyung</creator><creator>Repin, Denis</creator><creator>Sheng, Tao</creator><creator>Shen, Liang</creator><creator>Sun, Fei</creator><creator>Svitov, David</creator><creator>Thiruvathukal, George K</creator><creator>Zhang, Baiwu</creator><creator>Zhang, Jingchi</creator><creator>Zhang, Xiaopeng</creator><creator>Zhuo, Shaojie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181003</creationdate><title>2018 Low-Power Image Recognition Challenge</title><author>Alyamkin, Sergei ; Ardi, Matthew ; Brighton, Achille ; Berg, Alexander C ; Chen, Yiran ; Hsin-Pai, Cheng ; Chen, Bo ; Fan, Zichen ; Chen, Feng ; Fu, Bo ; Gauen, Kent ; Go, Jongkook ; Goncharenko, Alexander ; Guo, Xuyang ; Nguyen, Hong Hanh ; Howard, Andrew ; Huang, Yuanjun ; Kang, Donghyun ; Kim, Jaeyoun ; Kondratyev, Alexander ; Lee, Seungjae ; Lee, Suwoong ; Lee, Junhyeok ; Liang, Zhiyu ; Liu, Xin ; Liu, Juzheng ; Li, Zichao ; Lu, Yang ; Lu, Yung-Hsiang ; Malik, Deeptanshu ; Park, Eunbyung ; Repin, Denis ; Sheng, Tao ; Shen, Liang ; Sun, Fei ; Svitov, David ; Thiruvathukal, George K ; Zhang, Baiwu ; Zhang, Jingchi ; Zhang, Xiaopeng ; Zhuo, Shaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21162699743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Cameras</topic><topic>Competition</topic><topic>Computer vision</topic><topic>Energy consumption</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Object recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Alyamkin, Sergei</creatorcontrib><creatorcontrib>Ardi, Matthew</creatorcontrib><creatorcontrib>Brighton, Achille</creatorcontrib><creatorcontrib>Berg, Alexander C</creatorcontrib><creatorcontrib>Chen, Yiran</creatorcontrib><creatorcontrib>Hsin-Pai, Cheng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Fan, Zichen</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Fu, Bo</creatorcontrib><creatorcontrib>Gauen, Kent</creatorcontrib><creatorcontrib>Go, Jongkook</creatorcontrib><creatorcontrib>Goncharenko, Alexander</creatorcontrib><creatorcontrib>Guo, Xuyang</creatorcontrib><creatorcontrib>Nguyen, Hong Hanh</creatorcontrib><creatorcontrib>Howard, Andrew</creatorcontrib><creatorcontrib>Huang, Yuanjun</creatorcontrib><creatorcontrib>Kang, Donghyun</creatorcontrib><creatorcontrib>Kim, Jaeyoun</creatorcontrib><creatorcontrib>Kondratyev, Alexander</creatorcontrib><creatorcontrib>Lee, Seungjae</creatorcontrib><creatorcontrib>Lee, Suwoong</creatorcontrib><creatorcontrib>Lee, Junhyeok</creatorcontrib><creatorcontrib>Liang, Zhiyu</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Liu, Juzheng</creatorcontrib><creatorcontrib>Li, Zichao</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Lu, Yung-Hsiang</creatorcontrib><creatorcontrib>Malik, Deeptanshu</creatorcontrib><creatorcontrib>Park, Eunbyung</creatorcontrib><creatorcontrib>Repin, Denis</creatorcontrib><creatorcontrib>Sheng, Tao</creatorcontrib><creatorcontrib>Shen, Liang</creatorcontrib><creatorcontrib>Sun, Fei</creatorcontrib><creatorcontrib>Svitov, David</creatorcontrib><creatorcontrib>Thiruvathukal, George K</creatorcontrib><creatorcontrib>Zhang, Baiwu</creatorcontrib><creatorcontrib>Zhang, Jingchi</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><creatorcontrib>Zhuo, Shaojie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alyamkin, Sergei</au><au>Ardi, Matthew</au><au>Brighton, Achille</au><au>Berg, Alexander C</au><au>Chen, Yiran</au><au>Hsin-Pai, Cheng</au><au>Chen, Bo</au><au>Fan, Zichen</au><au>Chen, Feng</au><au>Fu, Bo</au><au>Gauen, Kent</au><au>Go, Jongkook</au><au>Goncharenko, Alexander</au><au>Guo, Xuyang</au><au>Nguyen, Hong Hanh</au><au>Howard, Andrew</au><au>Huang, Yuanjun</au><au>Kang, Donghyun</au><au>Kim, Jaeyoun</au><au>Kondratyev, Alexander</au><au>Lee, Seungjae</au><au>Lee, Suwoong</au><au>Lee, Junhyeok</au><au>Liang, Zhiyu</au><au>Liu, Xin</au><au>Liu, Juzheng</au><au>Li, Zichao</au><au>Lu, Yang</au><au>Lu, Yung-Hsiang</au><au>Malik, Deeptanshu</au><au>Park, Eunbyung</au><au>Repin, Denis</au><au>Sheng, Tao</au><au>Shen, Liang</au><au>Sun, Fei</au><au>Svitov, David</au><au>Thiruvathukal, George K</au><au>Zhang, Baiwu</au><au>Zhang, Jingchi</au><au>Zhang, Xiaopeng</au><au>Zhuo, Shaojie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>2018 Low-Power Image Recognition Challenge</atitle><jtitle>arXiv.org</jtitle><date>2018-10-03</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The Low-Power Image Recognition Challenge (LPIRC, https://rebootingcomputing.ieee.org/lpirc) is an annual competition started in 2015. The competition identifies the best technologies that can classify and detect objects in images efficiently (short execution time and low energy consumption) and accurately (high precision). Over the four years, the winners' scores have improved more than 24 times. As computer vision is widely used in many battery-powered systems (such as drones and mobile phones), the need for low-power computer vision will become increasingly important. This paper summarizes LPIRC 2018 by describing the three different tracks and the winners' solutions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2116269974 |
source | Publicly Available Content Database |
subjects | Batteries Cameras Competition Computer vision Energy consumption Image classification Image detection Object recognition |
title | 2018 Low-Power Image Recognition Challenge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=2018%20Low-Power%20Image%20Recognition%20Challenge&rft.jtitle=arXiv.org&rft.au=Alyamkin,%20Sergei&rft.date=2018-10-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2116269974%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21162699743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116269974&rft_id=info:pmid/&rfr_iscdi=true |