Loading…

Three-Dimensional Direct-Shear Behaviors of a Gravel–Structure Interface

AbstractGravel–structure interfaces exist widely in civil engineering practices, and their mechanical behaviors are crucial items in soil–structure interaction analysis. The interfaces are always characterized by three-dimensional (3D) features, which seldom have been explored. This paper presents t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geotechnical and geoenvironmental engineering 2018-12, Vol.144 (12)
Main Authors: Feng, Da-Kuo, Zhang, Jian-Min, Hou, Wen-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AbstractGravel–structure interfaces exist widely in civil engineering practices, and their mechanical behaviors are crucial items in soil–structure interaction analysis. The interfaces are always characterized by three-dimensional (3D) features, which seldom have been explored. This paper presents the 3D behaviors of a gravel–structure interface from large-scale two-way beeline, cross, circular, and arc shear tests. The normal displacement can be divided into irreversible and reversible components. The shear stress–displacement hysteretic relationship exhibits an elliptical response in circular shear paths, other than the hyperbolic trend observed in linear shear paths. The shear strength is isotropic, and behaves in accordance with the Mohr–Coulomb failure criterion. The shear path plays a significant role in the 3D interface behaviors. Good consistency is found to exist in the irreversible normal displacement versus shear work density relationship, the reversible normal displacement versus resultant tangential displacement relationship, and the resultant shear stress versus resultant tangential displacement hysteretic relationship, regardless of the shear paths.
ISSN:1090-0241
1943-5606
DOI:10.1061/(ASCE)GT.1943-5606.0001968