Loading…

Galerkin Approximation of Dynamical Quantities using Trajectory Data

Understanding chemical mechanisms requires estimating dynamical statistics such as expected hitting times, reaction rates, and committors. Here, we present a general framework for calculating these dynamical quantities by approximating boundary value problems using dynamical operators with a Galerki...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-02
Main Authors: Thiede, Erik H, Giannakis, Dimitrios, Dinner, Aaron R, Weare, Jonathan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Thiede, Erik H
Giannakis, Dimitrios
Dinner, Aaron R
Weare, Jonathan
description Understanding chemical mechanisms requires estimating dynamical statistics such as expected hitting times, reaction rates, and committors. Here, we present a general framework for calculating these dynamical quantities by approximating boundary value problems using dynamical operators with a Galerkin expansion. A specific choice of basis set in the expansion corresponds to estimation of dynamical quantities using a Markov state model. More generally, the boundary conditions impose restrictions on the choice of basis sets. We demonstrate how an alternative basis can be constructed using ideas from diffusion maps. In our numerical experiments, this basis gives results of comparable or better accuracy to Markov state models. Additionally, we show that delay embedding can reduce the information lost when projecting the system's dynamics for model construction; this improves estimates of dynamical statistics considerably over the standard practice of increasing the lag time.
doi_str_mv 10.48550/arxiv.1810.01841
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2116274501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116274501</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-49f8456a309611f8872ac524a558bf36075df522de9d58f0765d21509fdfac663</originalsourceid><addsrcrecordid>eNotjlFLwzAURoMgOOZ-gG8BnzuTm9w0fRyrTmEgQt_HtW0ktUtnmsr27y24pw_OwzkfYw9SrLVFFE8Uz_53Le0MhLRa3rAFKCUzqwHu2GocOyEEmBwQ1YKVO-rb-O0D35xOcTj7IyU_BD44Xl4CHX1NPf-YKCSffDvyafThi1eRurZOQ7zwkhLds1tH_diurrtk1ctztX3N9u-7t-1mnxGCzHThrEZDShRGSmdtDlQjaEK0n04ZkWPjEKBpiwatE7nBBiSKwjWOamPUkj3-a-ejP1M7pkM3TDHMxQNIaSDXKKT6A7mYS64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116274501</pqid></control><display><type>article</type><title>Galerkin Approximation of Dynamical Quantities using Trajectory Data</title><source>Publicly Available Content (ProQuest)</source><creator>Thiede, Erik H ; Giannakis, Dimitrios ; Dinner, Aaron R ; Weare, Jonathan</creator><creatorcontrib>Thiede, Erik H ; Giannakis, Dimitrios ; Dinner, Aaron R ; Weare, Jonathan</creatorcontrib><description>Understanding chemical mechanisms requires estimating dynamical statistics such as expected hitting times, reaction rates, and committors. Here, we present a general framework for calculating these dynamical quantities by approximating boundary value problems using dynamical operators with a Galerkin expansion. A specific choice of basis set in the expansion corresponds to estimation of dynamical quantities using a Markov state model. More generally, the boundary conditions impose restrictions on the choice of basis sets. We demonstrate how an alternative basis can be constructed using ideas from diffusion maps. In our numerical experiments, this basis gives results of comparable or better accuracy to Markov state models. Additionally, we show that delay embedding can reduce the information lost when projecting the system's dynamics for model construction; this improves estimates of dynamical statistics considerably over the standard practice of increasing the lag time.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1810.01841</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Boundary value problems ; Embedded systems ; Galerkin method ; Lag time ; Markov chains ; Model accuracy ; Organic chemistry ; Response time</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2116274501?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Thiede, Erik H</creatorcontrib><creatorcontrib>Giannakis, Dimitrios</creatorcontrib><creatorcontrib>Dinner, Aaron R</creatorcontrib><creatorcontrib>Weare, Jonathan</creatorcontrib><title>Galerkin Approximation of Dynamical Quantities using Trajectory Data</title><title>arXiv.org</title><description>Understanding chemical mechanisms requires estimating dynamical statistics such as expected hitting times, reaction rates, and committors. Here, we present a general framework for calculating these dynamical quantities by approximating boundary value problems using dynamical operators with a Galerkin expansion. A specific choice of basis set in the expansion corresponds to estimation of dynamical quantities using a Markov state model. More generally, the boundary conditions impose restrictions on the choice of basis sets. We demonstrate how an alternative basis can be constructed using ideas from diffusion maps. In our numerical experiments, this basis gives results of comparable or better accuracy to Markov state models. Additionally, we show that delay embedding can reduce the information lost when projecting the system's dynamics for model construction; this improves estimates of dynamical statistics considerably over the standard practice of increasing the lag time.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Embedded systems</subject><subject>Galerkin method</subject><subject>Lag time</subject><subject>Markov chains</subject><subject>Model accuracy</subject><subject>Organic chemistry</subject><subject>Response time</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjlFLwzAURoMgOOZ-gG8BnzuTm9w0fRyrTmEgQt_HtW0ktUtnmsr27y24pw_OwzkfYw9SrLVFFE8Uz_53Le0MhLRa3rAFKCUzqwHu2GocOyEEmBwQ1YKVO-rb-O0D35xOcTj7IyU_BD44Xl4CHX1NPf-YKCSffDvyafThi1eRurZOQ7zwkhLds1tH_diurrtk1ctztX3N9u-7t-1mnxGCzHThrEZDShRGSmdtDlQjaEK0n04ZkWPjEKBpiwatE7nBBiSKwjWOamPUkj3-a-ejP1M7pkM3TDHMxQNIaSDXKKT6A7mYS64</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Thiede, Erik H</creator><creator>Giannakis, Dimitrios</creator><creator>Dinner, Aaron R</creator><creator>Weare, Jonathan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190226</creationdate><title>Galerkin Approximation of Dynamical Quantities using Trajectory Data</title><author>Thiede, Erik H ; Giannakis, Dimitrios ; Dinner, Aaron R ; Weare, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-49f8456a309611f8872ac524a558bf36075df522de9d58f0765d21509fdfac663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Embedded systems</topic><topic>Galerkin method</topic><topic>Lag time</topic><topic>Markov chains</topic><topic>Model accuracy</topic><topic>Organic chemistry</topic><topic>Response time</topic><toplevel>online_resources</toplevel><creatorcontrib>Thiede, Erik H</creatorcontrib><creatorcontrib>Giannakis, Dimitrios</creatorcontrib><creatorcontrib>Dinner, Aaron R</creatorcontrib><creatorcontrib>Weare, Jonathan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiede, Erik H</au><au>Giannakis, Dimitrios</au><au>Dinner, Aaron R</au><au>Weare, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galerkin Approximation of Dynamical Quantities using Trajectory Data</atitle><jtitle>arXiv.org</jtitle><date>2019-02-26</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Understanding chemical mechanisms requires estimating dynamical statistics such as expected hitting times, reaction rates, and committors. Here, we present a general framework for calculating these dynamical quantities by approximating boundary value problems using dynamical operators with a Galerkin expansion. A specific choice of basis set in the expansion corresponds to estimation of dynamical quantities using a Markov state model. More generally, the boundary conditions impose restrictions on the choice of basis sets. We demonstrate how an alternative basis can be constructed using ideas from diffusion maps. In our numerical experiments, this basis gives results of comparable or better accuracy to Markov state models. Additionally, we show that delay embedding can reduce the information lost when projecting the system's dynamics for model construction; this improves estimates of dynamical statistics considerably over the standard practice of increasing the lag time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1810.01841</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2116274501
source Publicly Available Content (ProQuest)
subjects Boundary conditions
Boundary value problems
Embedded systems
Galerkin method
Lag time
Markov chains
Model accuracy
Organic chemistry
Response time
title Galerkin Approximation of Dynamical Quantities using Trajectory Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galerkin%20Approximation%20of%20Dynamical%20Quantities%20using%20Trajectory%20Data&rft.jtitle=arXiv.org&rft.au=Thiede,%20Erik%20H&rft.date=2019-02-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1810.01841&rft_dat=%3Cproquest%3E2116274501%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-49f8456a309611f8872ac524a558bf36075df522de9d58f0765d21509fdfac663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116274501&rft_id=info:pmid/&rfr_iscdi=true