Loading…

An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues

Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and consta...

Full description

Saved in:
Bibliographic Details
Published in:Asia-Pacific journal of operational research 2015-06, Vol.32 (3)
Main Authors: Seo, Dong-Won, Lee, Jinpyo, Chang, Byeong-Yun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page
container_title Asia-Pacific journal of operational research
container_volume 32
creator Seo, Dong-Won
Lee, Jinpyo
Chang, Byeong-Yun
description Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and constant service times. The blocking probability of a finite-capacity queueing system can be obtained from either the tail probability of stationary waiting time or the difference between two expected stationary waiting times at the first node of the corresponding extended 3-node tandem queue. The computational results in this study show that the proposed approach provides a good approximation of the blocking probability, and in particular, it works well under moderately to heavily loaded situations. The proposed approach is not limited to a particular blocking policy, system structure, or service time; hence, it is applicable to general queues with finite buffer capacities and various blocking policies.
doi_str_mv 10.1142/S0217595915500177
format article
fullrecord <record><control><sourceid>proquest_world</sourceid><recordid>TN_cdi_proquest_journals_2116351923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116351923</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1397-74cd6b5b6d7935f6056a07d100a365b07f0bb8154b56fbd14acae99b278ab2c23</originalsourceid><addsrcrecordid>eNplkEFOwzAQRS0EEqVwAHaWWId47Niul6VQQBQBoqwjO3HAJcTBSQUcADbsOGJPgquyYzUa_af5_w9Ch0COATKa3hMKkiuugHNCQMotNACpWCIJqG00WMvJWt9Fe123IJHhlA7QfNzgcdsG_-5edO98g69t_-RLXPmAT2pfPLvmEd8Gb7Rxteud7bCLUHqaQnoFePX1g1ffn5uV4rulXdpuH-1Uuu7swd8coofp2Xxykcxuzi8n41nSAlMykVlRCsONKGNQXgnChSayBEI0E9wQWRFjRsAzw0VlSsh0oa1ShsqRNrSgbIiONndj_tfo2-cLvwxNtMwpgGAcFGWRIhvqzYe67Apnm95VrsjbEDuHj_zf79gvRQhg6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116351923</pqid></control><display><type>article</type><title>An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues</title><source>Business Source Ultimate</source><creator>Seo, Dong-Won ; Lee, Jinpyo ; Chang, Byeong-Yun</creator><creatorcontrib>Seo, Dong-Won ; Lee, Jinpyo ; Chang, Byeong-Yun</creatorcontrib><description>Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and constant service times. The blocking probability of a finite-capacity queueing system can be obtained from either the tail probability of stationary waiting time or the difference between two expected stationary waiting times at the first node of the corresponding extended 3-node tandem queue. The computational results in this study show that the proposed approach provides a good approximation of the blocking probability, and in particular, it works well under moderately to heavily loaded situations. The proposed approach is not limited to a particular blocking policy, system structure, or service time; hence, it is applicable to general queues with finite buffer capacities and various blocking policies.</description><identifier>ISSN: 0217-5959</identifier><identifier>EISSN: 1793-7019</identifier><identifier>EISSN: 0217-5959</identifier><identifier>DOI: 10.1142/S0217595915500177</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Co. &amp; Operational Research Society of Singapore</publisher><subject>Approximation ; Computation ; Markov analysis ; Mathematical analysis ; Nodes ; Operations research ; Probability ; Queues ; Queuing theory</subject><ispartof>Asia-Pacific journal of operational research, 2015-06, Vol.32 (3)</ispartof><rights>2015, World Scientific Publishing Co. &amp; Operational Research Society of Singapore</rights><rights>2015. World Scientific Publishing Co. &amp; Operational Research Society of Singapore</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Seo, Dong-Won</creatorcontrib><creatorcontrib>Lee, Jinpyo</creatorcontrib><creatorcontrib>Chang, Byeong-Yun</creatorcontrib><title>An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues</title><title>Asia-Pacific journal of operational research</title><description>Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and constant service times. The blocking probability of a finite-capacity queueing system can be obtained from either the tail probability of stationary waiting time or the difference between two expected stationary waiting times at the first node of the corresponding extended 3-node tandem queue. The computational results in this study show that the proposed approach provides a good approximation of the blocking probability, and in particular, it works well under moderately to heavily loaded situations. The proposed approach is not limited to a particular blocking policy, system structure, or service time; hence, it is applicable to general queues with finite buffer capacities and various blocking policies.</description><subject>Approximation</subject><subject>Computation</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Nodes</subject><subject>Operations research</subject><subject>Probability</subject><subject>Queues</subject><subject>Queuing theory</subject><issn>0217-5959</issn><issn>1793-7019</issn><issn>0217-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNplkEFOwzAQRS0EEqVwAHaWWId47Niul6VQQBQBoqwjO3HAJcTBSQUcADbsOGJPgquyYzUa_af5_w9Ch0COATKa3hMKkiuugHNCQMotNACpWCIJqG00WMvJWt9Fe123IJHhlA7QfNzgcdsG_-5edO98g69t_-RLXPmAT2pfPLvmEd8Gb7Rxteud7bCLUHqaQnoFePX1g1ffn5uV4rulXdpuH-1Uuu7swd8coofp2Xxykcxuzi8n41nSAlMykVlRCsONKGNQXgnChSayBEI0E9wQWRFjRsAzw0VlSsh0oa1ShsqRNrSgbIiONndj_tfo2-cLvwxNtMwpgGAcFGWRIhvqzYe67Apnm95VrsjbEDuHj_zf79gvRQhg6w</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Seo, Dong-Won</creator><creator>Lee, Jinpyo</creator><creator>Chang, Byeong-Yun</creator><general>World Scientific Publishing Co. &amp; Operational Research Society of Singapore</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>4T-</scope><scope>JQ2</scope></search><sort><creationdate>201506</creationdate><title>An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues</title><author>Seo, Dong-Won ; Lee, Jinpyo ; Chang, Byeong-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1397-74cd6b5b6d7935f6056a07d100a365b07f0bb8154b56fbd14acae99b278ab2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Nodes</topic><topic>Operations research</topic><topic>Probability</topic><topic>Queues</topic><topic>Queuing theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Dong-Won</creatorcontrib><creatorcontrib>Lee, Jinpyo</creatorcontrib><creatorcontrib>Chang, Byeong-Yun</creatorcontrib><collection>Docstoc</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asia-Pacific journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Dong-Won</au><au>Lee, Jinpyo</au><au>Chang, Byeong-Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues</atitle><jtitle>Asia-Pacific journal of operational research</jtitle><date>2015-06</date><risdate>2015</risdate><volume>32</volume><issue>3</issue><issn>0217-5959</issn><eissn>1793-7019</eissn><eissn>0217-5959</eissn><abstract>Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and constant service times. The blocking probability of a finite-capacity queueing system can be obtained from either the tail probability of stationary waiting time or the difference between two expected stationary waiting times at the first node of the corresponding extended 3-node tandem queue. The computational results in this study show that the proposed approach provides a good approximation of the blocking probability, and in particular, it works well under moderately to heavily loaded situations. The proposed approach is not limited to a particular blocking policy, system structure, or service time; hence, it is applicable to general queues with finite buffer capacities and various blocking policies.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Co. &amp; Operational Research Society of Singapore</pub><doi>10.1142/S0217595915500177</doi></addata></record>
fulltext fulltext
identifier ISSN: 0217-5959
ispartof Asia-Pacific journal of operational research, 2015-06, Vol.32 (3)
issn 0217-5959
1793-7019
0217-5959
language eng
recordid cdi_proquest_journals_2116351923
source Business Source Ultimate
subjects Approximation
Computation
Markov analysis
Mathematical analysis
Nodes
Operations research
Probability
Queues
Queuing theory
title An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_world&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approximation%20Method%20for%20Blocking%20Probabilities%20in%20M/D/1/K1%20%E2%86%92%20%E2%8B%85/D/1/K2%20Queues&rft.jtitle=Asia-Pacific%20journal%20of%20operational%20research&rft.au=Seo,%20Dong-Won&rft.date=2015-06&rft.volume=32&rft.issue=3&rft.issn=0217-5959&rft.eissn=1793-7019&rft_id=info:doi/10.1142/S0217595915500177&rft_dat=%3Cproquest_world%3E2116351923%3C/proquest_world%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1397-74cd6b5b6d7935f6056a07d100a365b07f0bb8154b56fbd14acae99b278ab2c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116351923&rft_id=info:pmid/&rfr_iscdi=true