Loading…
An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues
Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and consta...
Saved in:
Published in: | Asia-Pacific journal of operational research 2015-06, Vol.32 (3) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Asia-Pacific journal of operational research |
container_volume | 32 |
creator | Seo, Dong-Won Lee, Jinpyo Chang, Byeong-Yun |
description | Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and constant service times. The blocking probability of a finite-capacity queueing system can be obtained from either the tail probability of stationary waiting time or the difference between two expected stationary waiting times at the first node of the corresponding extended 3-node tandem queue. The computational results in this study show that the proposed approach provides a good approximation of the blocking probability, and in particular, it works well under moderately to heavily loaded situations. The proposed approach is not limited to a particular blocking policy, system structure, or service time; hence, it is applicable to general queues with finite buffer capacities and various blocking policies. |
doi_str_mv | 10.1142/S0217595915500177 |
format | article |
fullrecord | <record><control><sourceid>proquest_world</sourceid><recordid>TN_cdi_proquest_journals_2116351923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116351923</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1397-74cd6b5b6d7935f6056a07d100a365b07f0bb8154b56fbd14acae99b278ab2c23</originalsourceid><addsrcrecordid>eNplkEFOwzAQRS0EEqVwAHaWWId47Niul6VQQBQBoqwjO3HAJcTBSQUcADbsOGJPgquyYzUa_af5_w9Ch0COATKa3hMKkiuugHNCQMotNACpWCIJqG00WMvJWt9Fe123IJHhlA7QfNzgcdsG_-5edO98g69t_-RLXPmAT2pfPLvmEd8Gb7Rxteud7bCLUHqaQnoFePX1g1ffn5uV4rulXdpuH-1Uuu7swd8coofp2Xxykcxuzi8n41nSAlMykVlRCsONKGNQXgnChSayBEI0E9wQWRFjRsAzw0VlSsh0oa1ShsqRNrSgbIiONndj_tfo2-cLvwxNtMwpgGAcFGWRIhvqzYe67Apnm95VrsjbEDuHj_zf79gvRQhg6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116351923</pqid></control><display><type>article</type><title>An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues</title><source>Business Source Ultimate</source><creator>Seo, Dong-Won ; Lee, Jinpyo ; Chang, Byeong-Yun</creator><creatorcontrib>Seo, Dong-Won ; Lee, Jinpyo ; Chang, Byeong-Yun</creatorcontrib><description>Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and constant service times. The blocking probability of a finite-capacity queueing system can be obtained from either the tail probability of stationary waiting time or the difference between two expected stationary waiting times at the first node of the corresponding extended 3-node tandem queue. The computational results in this study show that the proposed approach provides a good approximation of the blocking probability, and in particular, it works well under moderately to heavily loaded situations. The proposed approach is not limited to a particular blocking policy, system structure, or service time; hence, it is applicable to general queues with finite buffer capacities and various blocking policies.</description><identifier>ISSN: 0217-5959</identifier><identifier>EISSN: 1793-7019</identifier><identifier>EISSN: 0217-5959</identifier><identifier>DOI: 10.1142/S0217595915500177</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Co. & Operational Research Society of Singapore</publisher><subject>Approximation ; Computation ; Markov analysis ; Mathematical analysis ; Nodes ; Operations research ; Probability ; Queues ; Queuing theory</subject><ispartof>Asia-Pacific journal of operational research, 2015-06, Vol.32 (3)</ispartof><rights>2015, World Scientific Publishing Co. & Operational Research Society of Singapore</rights><rights>2015. World Scientific Publishing Co. & Operational Research Society of Singapore</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Seo, Dong-Won</creatorcontrib><creatorcontrib>Lee, Jinpyo</creatorcontrib><creatorcontrib>Chang, Byeong-Yun</creatorcontrib><title>An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues</title><title>Asia-Pacific journal of operational research</title><description>Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and constant service times. The blocking probability of a finite-capacity queueing system can be obtained from either the tail probability of stationary waiting time or the difference between two expected stationary waiting times at the first node of the corresponding extended 3-node tandem queue. The computational results in this study show that the proposed approach provides a good approximation of the blocking probability, and in particular, it works well under moderately to heavily loaded situations. The proposed approach is not limited to a particular blocking policy, system structure, or service time; hence, it is applicable to general queues with finite buffer capacities and various blocking policies.</description><subject>Approximation</subject><subject>Computation</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Nodes</subject><subject>Operations research</subject><subject>Probability</subject><subject>Queues</subject><subject>Queuing theory</subject><issn>0217-5959</issn><issn>1793-7019</issn><issn>0217-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNplkEFOwzAQRS0EEqVwAHaWWId47Niul6VQQBQBoqwjO3HAJcTBSQUcADbsOGJPgquyYzUa_af5_w9Ch0COATKa3hMKkiuugHNCQMotNACpWCIJqG00WMvJWt9Fe123IJHhlA7QfNzgcdsG_-5edO98g69t_-RLXPmAT2pfPLvmEd8Gb7Rxteud7bCLUHqaQnoFePX1g1ffn5uV4rulXdpuH-1Uuu7swd8coofp2Xxykcxuzi8n41nSAlMykVlRCsONKGNQXgnChSayBEI0E9wQWRFjRsAzw0VlSsh0oa1ShsqRNrSgbIiONndj_tfo2-cLvwxNtMwpgGAcFGWRIhvqzYe67Apnm95VrsjbEDuHj_zf79gvRQhg6w</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Seo, Dong-Won</creator><creator>Lee, Jinpyo</creator><creator>Chang, Byeong-Yun</creator><general>World Scientific Publishing Co. & Operational Research Society of Singapore</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>4T-</scope><scope>JQ2</scope></search><sort><creationdate>201506</creationdate><title>An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues</title><author>Seo, Dong-Won ; Lee, Jinpyo ; Chang, Byeong-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1397-74cd6b5b6d7935f6056a07d100a365b07f0bb8154b56fbd14acae99b278ab2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Nodes</topic><topic>Operations research</topic><topic>Probability</topic><topic>Queues</topic><topic>Queuing theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Dong-Won</creatorcontrib><creatorcontrib>Lee, Jinpyo</creatorcontrib><creatorcontrib>Chang, Byeong-Yun</creatorcontrib><collection>Docstoc</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asia-Pacific journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Dong-Won</au><au>Lee, Jinpyo</au><au>Chang, Byeong-Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues</atitle><jtitle>Asia-Pacific journal of operational research</jtitle><date>2015-06</date><risdate>2015</risdate><volume>32</volume><issue>3</issue><issn>0217-5959</issn><eissn>1793-7019</eissn><eissn>0217-5959</eissn><abstract>Obtaining exact blocking probabilities for tandem queues with finite capacities is not a trivial problem. In this paper, we propose a computational approximation method using max-plus algebra for computing blocking probability in a Poisson-driven 2-node tandem queue with finite capacities and constant service times. The blocking probability of a finite-capacity queueing system can be obtained from either the tail probability of stationary waiting time or the difference between two expected stationary waiting times at the first node of the corresponding extended 3-node tandem queue. The computational results in this study show that the proposed approach provides a good approximation of the blocking probability, and in particular, it works well under moderately to heavily loaded situations. The proposed approach is not limited to a particular blocking policy, system structure, or service time; hence, it is applicable to general queues with finite buffer capacities and various blocking policies.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Co. & Operational Research Society of Singapore</pub><doi>10.1142/S0217595915500177</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0217-5959 |
ispartof | Asia-Pacific journal of operational research, 2015-06, Vol.32 (3) |
issn | 0217-5959 1793-7019 0217-5959 |
language | eng |
recordid | cdi_proquest_journals_2116351923 |
source | Business Source Ultimate |
subjects | Approximation Computation Markov analysis Mathematical analysis Nodes Operations research Probability Queues Queuing theory |
title | An Approximation Method for Blocking Probabilities in M/D/1/K1 → ⋅/D/1/K2 Queues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_world&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approximation%20Method%20for%20Blocking%20Probabilities%20in%20M/D/1/K1%20%E2%86%92%20%E2%8B%85/D/1/K2%20Queues&rft.jtitle=Asia-Pacific%20journal%20of%20operational%20research&rft.au=Seo,%20Dong-Won&rft.date=2015-06&rft.volume=32&rft.issue=3&rft.issn=0217-5959&rft.eissn=1793-7019&rft_id=info:doi/10.1142/S0217595915500177&rft_dat=%3Cproquest_world%3E2116351923%3C/proquest_world%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1397-74cd6b5b6d7935f6056a07d100a365b07f0bb8154b56fbd14acae99b278ab2c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116351923&rft_id=info:pmid/&rfr_iscdi=true |