Loading…
Information‐driven robotic sampling in the coastal ocean
Efficient sampling of coastal ocean processes, especially mechanisms such as upwelling and internal waves and their influence on primary production, is critical for understanding our changing oceans. Coupling robotic sampling with ocean models provides an effective approach to adaptively sample such...
Saved in:
Published in: | Journal of field robotics 2018-10, Vol.35 (7), p.1101-1121 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Efficient sampling of coastal ocean processes, especially mechanisms such as upwelling and internal waves and their influence on primary production, is critical for understanding our changing oceans. Coupling robotic sampling with ocean models provides an effective approach to adaptively sample such features. We present methods that capitalize on information from ocean models and in situ measurements, using Gaussian process modeling and objective functions, allowing sampling efforts to be concentrated to regions with high scientific interest. We demonstrate how to combine and correlate marine data from autonomous underwater vehicles, model forecasts, remote sensing satellite, buoy, and ship‐based measurements, as a means to cross‐validate and improve ocean model accuracy, in addition to resolving upper water‐column interactions. Our work is focused on the west coast of Mid‐Norway where significant influx of Atlantic Water produces a rich and complex physical–biological coupling, which is hard to measure and characterize due to the harsh environmental conditions. Results from both simulation and full‐scale sea trials are presented. |
---|---|
ISSN: | 1556-4959 1556-4967 |
DOI: | 10.1002/rob.21805 |