Loading…
Anisotropic Growth of Voronoi Cells
This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessella...
Saved in:
Published in: | Advances in applied probability 1994-03, Vol.26 (1), p.43-53 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3 |
container_end_page | 53 |
container_issue | 1 |
container_start_page | 43 |
container_title | Advances in applied probability |
container_volume | 26 |
creator | Scheike, Thomas H. |
description | This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic. |
doi_str_mv | 10.2307/1427577 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_211662013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_1427577</cupid><jstor_id>1427577</jstor_id><sourcerecordid>1427577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3</originalsourceid><addsrcrecordid>eNp9kEFLxDAYRIMoWFfxLxQVxEM1X5Im7XEpuruw4EW9hjRNtKXb1KSL-O_t0oLgwdMw8JgHg9Al4HtCsXgARkQqxBGKgIk04ZizYxRhjCHJuMhO0VkIzVipyHCErpddHdzgXV_reOXd1_AROxu_Oe86V8eFadtwjk6saoO5mHOBXp8eX4p1sn1ebYrlNtFEsCHhpTBcl4oym0Fl1WjQVnOeQkVIlec5NylVYA_iHPI0U7wkmlpDGAjDFF2gq2m39-5zb8IgG7f33aiUBIBzgoGO0O0Eae9C8MbK3tc75b8lYHk4QM4HjOTNRDZhcP4f7G4eVLvS19W7-dX-ZX8A6Z5i_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211662013</pqid></control><display><type>article</type><title>Anisotropic Growth of Voronoi Cells</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Scheike, Thomas H.</creator><creatorcontrib>Scheike, Thomas H.</creatorcontrib><description>This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.2307/1427577</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cell growth ; Eigenvalues ; Ergodic theory ; Euclidean space ; Geometry ; Mathematical models ; Mosaic ; Poisson process ; Probability ; Statistical analysis ; Stochastic Geometry and Statistical Applications ; Tessellations ; Vertices</subject><ispartof>Advances in applied probability, 1994-03, Vol.26 (1), p.43-53</ispartof><rights>Copyright © Applied Probability Trust 1994</rights><rights>Copyright 1994 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Mar 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3</citedby><cites>FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1427577$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1427577$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids></links><search><creatorcontrib>Scheike, Thomas H.</creatorcontrib><title>Anisotropic Growth of Voronoi Cells</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.</description><subject>Cell growth</subject><subject>Eigenvalues</subject><subject>Ergodic theory</subject><subject>Euclidean space</subject><subject>Geometry</subject><subject>Mathematical models</subject><subject>Mosaic</subject><subject>Poisson process</subject><subject>Probability</subject><subject>Statistical analysis</subject><subject>Stochastic Geometry and Statistical Applications</subject><subject>Tessellations</subject><subject>Vertices</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAYRIMoWFfxLxQVxEM1X5Im7XEpuruw4EW9hjRNtKXb1KSL-O_t0oLgwdMw8JgHg9Al4HtCsXgARkQqxBGKgIk04ZizYxRhjCHJuMhO0VkIzVipyHCErpddHdzgXV_reOXd1_AROxu_Oe86V8eFadtwjk6saoO5mHOBXp8eX4p1sn1ebYrlNtFEsCHhpTBcl4oym0Fl1WjQVnOeQkVIlec5NylVYA_iHPI0U7wkmlpDGAjDFF2gq2m39-5zb8IgG7f33aiUBIBzgoGO0O0Eae9C8MbK3tc75b8lYHk4QM4HjOTNRDZhcP4f7G4eVLvS19W7-dX-ZX8A6Z5i_Q</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Scheike, Thomas H.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940301</creationdate><title>Anisotropic Growth of Voronoi Cells</title><author>Scheike, Thomas H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Cell growth</topic><topic>Eigenvalues</topic><topic>Ergodic theory</topic><topic>Euclidean space</topic><topic>Geometry</topic><topic>Mathematical models</topic><topic>Mosaic</topic><topic>Poisson process</topic><topic>Probability</topic><topic>Statistical analysis</topic><topic>Stochastic Geometry and Statistical Applications</topic><topic>Tessellations</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheike, Thomas H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheike, Thomas H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Growth of Voronoi Cells</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>1994-03-01</date><risdate>1994</risdate><volume>26</volume><issue>1</issue><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/1427577</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 1994-03, Vol.26 (1), p.43-53 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_proquest_journals_211662013 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Cell growth Eigenvalues Ergodic theory Euclidean space Geometry Mathematical models Mosaic Poisson process Probability Statistical analysis Stochastic Geometry and Statistical Applications Tessellations Vertices |
title | Anisotropic Growth of Voronoi Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Growth%20of%20Voronoi%20Cells&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Scheike,%20Thomas%20H.&rft.date=1994-03-01&rft.volume=26&rft.issue=1&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.2307/1427577&rft_dat=%3Cjstor_proqu%3E1427577%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211662013&rft_id=info:pmid/&rft_cupid=10_2307_1427577&rft_jstor_id=1427577&rfr_iscdi=true |