Loading…

Anisotropic Growth of Voronoi Cells

This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessella...

Full description

Saved in:
Bibliographic Details
Published in:Advances in applied probability 1994-03, Vol.26 (1), p.43-53
Main Author: Scheike, Thomas H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3
cites cdi_FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3
container_end_page 53
container_issue 1
container_start_page 43
container_title Advances in applied probability
container_volume 26
creator Scheike, Thomas H.
description This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.
doi_str_mv 10.2307/1427577
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_211662013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_1427577</cupid><jstor_id>1427577</jstor_id><sourcerecordid>1427577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3</originalsourceid><addsrcrecordid>eNp9kEFLxDAYRIMoWFfxLxQVxEM1X5Im7XEpuruw4EW9hjRNtKXb1KSL-O_t0oLgwdMw8JgHg9Al4HtCsXgARkQqxBGKgIk04ZizYxRhjCHJuMhO0VkIzVipyHCErpddHdzgXV_reOXd1_AROxu_Oe86V8eFadtwjk6saoO5mHOBXp8eX4p1sn1ebYrlNtFEsCHhpTBcl4oym0Fl1WjQVnOeQkVIlec5NylVYA_iHPI0U7wkmlpDGAjDFF2gq2m39-5zb8IgG7f33aiUBIBzgoGO0O0Eae9C8MbK3tc75b8lYHk4QM4HjOTNRDZhcP4f7G4eVLvS19W7-dX-ZX8A6Z5i_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211662013</pqid></control><display><type>article</type><title>Anisotropic Growth of Voronoi Cells</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Scheike, Thomas H.</creator><creatorcontrib>Scheike, Thomas H.</creatorcontrib><description>This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.2307/1427577</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cell growth ; Eigenvalues ; Ergodic theory ; Euclidean space ; Geometry ; Mathematical models ; Mosaic ; Poisson process ; Probability ; Statistical analysis ; Stochastic Geometry and Statistical Applications ; Tessellations ; Vertices</subject><ispartof>Advances in applied probability, 1994-03, Vol.26 (1), p.43-53</ispartof><rights>Copyright © Applied Probability Trust 1994</rights><rights>Copyright 1994 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Mar 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3</citedby><cites>FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1427577$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1427577$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids></links><search><creatorcontrib>Scheike, Thomas H.</creatorcontrib><title>Anisotropic Growth of Voronoi Cells</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.</description><subject>Cell growth</subject><subject>Eigenvalues</subject><subject>Ergodic theory</subject><subject>Euclidean space</subject><subject>Geometry</subject><subject>Mathematical models</subject><subject>Mosaic</subject><subject>Poisson process</subject><subject>Probability</subject><subject>Statistical analysis</subject><subject>Stochastic Geometry and Statistical Applications</subject><subject>Tessellations</subject><subject>Vertices</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAYRIMoWFfxLxQVxEM1X5Im7XEpuruw4EW9hjRNtKXb1KSL-O_t0oLgwdMw8JgHg9Al4HtCsXgARkQqxBGKgIk04ZizYxRhjCHJuMhO0VkIzVipyHCErpddHdzgXV_reOXd1_AROxu_Oe86V8eFadtwjk6saoO5mHOBXp8eX4p1sn1ebYrlNtFEsCHhpTBcl4oym0Fl1WjQVnOeQkVIlec5NylVYA_iHPI0U7wkmlpDGAjDFF2gq2m39-5zb8IgG7f33aiUBIBzgoGO0O0Eae9C8MbK3tc75b8lYHk4QM4HjOTNRDZhcP4f7G4eVLvS19W7-dX-ZX8A6Z5i_Q</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Scheike, Thomas H.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940301</creationdate><title>Anisotropic Growth of Voronoi Cells</title><author>Scheike, Thomas H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Cell growth</topic><topic>Eigenvalues</topic><topic>Ergodic theory</topic><topic>Euclidean space</topic><topic>Geometry</topic><topic>Mathematical models</topic><topic>Mosaic</topic><topic>Poisson process</topic><topic>Probability</topic><topic>Statistical analysis</topic><topic>Stochastic Geometry and Statistical Applications</topic><topic>Tessellations</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheike, Thomas H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheike, Thomas H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Growth of Voronoi Cells</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>1994-03-01</date><risdate>1994</risdate><volume>26</volume><issue>1</issue><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/1427577</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 1994-03, Vol.26 (1), p.43-53
issn 0001-8678
1475-6064
language eng
recordid cdi_proquest_journals_211662013
source JSTOR Archival Journals and Primary Sources Collection
subjects Cell growth
Eigenvalues
Ergodic theory
Euclidean space
Geometry
Mathematical models
Mosaic
Poisson process
Probability
Statistical analysis
Stochastic Geometry and Statistical Applications
Tessellations
Vertices
title Anisotropic Growth of Voronoi Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Growth%20of%20Voronoi%20Cells&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Scheike,%20Thomas%20H.&rft.date=1994-03-01&rft.volume=26&rft.issue=1&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.2307/1427577&rft_dat=%3Cjstor_proqu%3E1427577%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c274t-6b7e6cba34f81dfa037cfc6651d22d9996e53a1f378091958a6b2c3fe2417e4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211662013&rft_id=info:pmid/&rft_cupid=10_2307_1427577&rft_jstor_id=1427577&rfr_iscdi=true