Loading…
Image Visual Realism: From Human Perception to Machine Computation
Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensiv...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2018-09, Vol.40 (9), p.2180-2193 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3 |
container_end_page | 2193 |
container_issue | 9 |
container_start_page | 2180 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 40 |
creator | Fan, Shaojing Ng, Tian-Tsong Koenig, Bryan Lee Herberg, Jonathan Samuel Jiang, Ming Shen, Zhiqi Zhao, Qi |
description | Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2,520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and deep convolutional neural network models to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception. |
doi_str_mv | 10.1109/TPAMI.2017.2747150 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2117113965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8022957</ieee_id><sourcerecordid>2117113965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSuh_Z7K63WqwttFikel02m4lGsknMJgf_vamtPXgamHlmmPdB6JLgMSFY3W3Wk9ViTDERYyoiQTg-QkOimAoZZ-oYDTGJaSgllQN05v0nxiTimJ2iAZUyjiMZDdHDwpl3CN5y35kieAFT5N7dB7OmcsG8c6YM1tBYqNu8KoO2ClbGfuQlBNPK1V1rtu1zdJKZwsPFvo7Q6-xxM52Hy-enxXSyDC3jpA1TLGIplI0EsyoWOGGpTVVGMLOcmSyNMmyZAS55nLKEQaTihIjUgJBZKgSwEbrd3a2b6qsD32qXewtFYUqoOq_75DzCtM_fozf_0M-qa8r-O00JEYQwFfOeojvKNpX3DWS6bnJnmm9NsN4a1r-G9daw3hvul673p7vEQXpY-VPaA1c7IAeAw1hiShUX7AftB34W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117113965</pqid></control><display><type>article</type><title>Image Visual Realism: From Human Perception to Machine Computation</title><source>IEEE Xplore (Online service)</source><creator>Fan, Shaojing ; Ng, Tian-Tsong ; Koenig, Bryan Lee ; Herberg, Jonathan Samuel ; Jiang, Ming ; Shen, Zhiqi ; Zhao, Qi</creator><creatorcontrib>Fan, Shaojing ; Ng, Tian-Tsong ; Koenig, Bryan Lee ; Herberg, Jonathan Samuel ; Jiang, Ming ; Shen, Zhiqi ; Zhao, Qi</creatorcontrib><description>Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2,520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and deep convolutional neural network models to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2747150</identifier><identifier>PMID: 28866484</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Computation ; Computational modeling ; Computer Graphics ; convolutional neural network ; Fabric analysis ; Face ; Female ; human psychophysics ; Humans ; Judgments ; Machine Learning ; Male ; Mathematical models ; Models, Statistical ; Neural Networks (Computer) ; Psychophysics - methods ; Realism ; Rendering (computer graphics) ; Retouching ; Solid modeling ; statistical modeling ; Statistical models ; Video boards ; Virtual Reality ; Visual Perception - physiology ; Visual perception driven algorithms ; Visual realism ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-09, Vol.40 (9), p.2180-2193</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3</citedby><cites>FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3</cites><orcidid>0000-0002-7744-1133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8022957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Shaojing</creatorcontrib><creatorcontrib>Ng, Tian-Tsong</creatorcontrib><creatorcontrib>Koenig, Bryan Lee</creatorcontrib><creatorcontrib>Herberg, Jonathan Samuel</creatorcontrib><creatorcontrib>Jiang, Ming</creatorcontrib><creatorcontrib>Shen, Zhiqi</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><title>Image Visual Realism: From Human Perception to Machine Computation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2,520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and deep convolutional neural network models to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer Graphics</subject><subject>convolutional neural network</subject><subject>Fabric analysis</subject><subject>Face</subject><subject>Female</subject><subject>human psychophysics</subject><subject>Humans</subject><subject>Judgments</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Neural Networks (Computer)</subject><subject>Psychophysics - methods</subject><subject>Realism</subject><subject>Rendering (computer graphics)</subject><subject>Retouching</subject><subject>Solid modeling</subject><subject>statistical modeling</subject><subject>Statistical models</subject><subject>Video boards</subject><subject>Virtual Reality</subject><subject>Visual Perception - physiology</subject><subject>Visual perception driven algorithms</subject><subject>Visual realism</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSuh_Z7K63WqwttFikel02m4lGsknMJgf_vamtPXgamHlmmPdB6JLgMSFY3W3Wk9ViTDERYyoiQTg-QkOimAoZZ-oYDTGJaSgllQN05v0nxiTimJ2iAZUyjiMZDdHDwpl3CN5y35kieAFT5N7dB7OmcsG8c6YM1tBYqNu8KoO2ClbGfuQlBNPK1V1rtu1zdJKZwsPFvo7Q6-xxM52Hy-enxXSyDC3jpA1TLGIplI0EsyoWOGGpTVVGMLOcmSyNMmyZAS55nLKEQaTihIjUgJBZKgSwEbrd3a2b6qsD32qXewtFYUqoOq_75DzCtM_fozf_0M-qa8r-O00JEYQwFfOeojvKNpX3DWS6bnJnmm9NsN4a1r-G9daw3hvul673p7vEQXpY-VPaA1c7IAeAw1hiShUX7AftB34W</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Fan, Shaojing</creator><creator>Ng, Tian-Tsong</creator><creator>Koenig, Bryan Lee</creator><creator>Herberg, Jonathan Samuel</creator><creator>Jiang, Ming</creator><creator>Shen, Zhiqi</creator><creator>Zhao, Qi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7744-1133</orcidid></search><sort><creationdate>20180901</creationdate><title>Image Visual Realism: From Human Perception to Machine Computation</title><author>Fan, Shaojing ; Ng, Tian-Tsong ; Koenig, Bryan Lee ; Herberg, Jonathan Samuel ; Jiang, Ming ; Shen, Zhiqi ; Zhao, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer Graphics</topic><topic>convolutional neural network</topic><topic>Fabric analysis</topic><topic>Face</topic><topic>Female</topic><topic>human psychophysics</topic><topic>Humans</topic><topic>Judgments</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Neural Networks (Computer)</topic><topic>Psychophysics - methods</topic><topic>Realism</topic><topic>Rendering (computer graphics)</topic><topic>Retouching</topic><topic>Solid modeling</topic><topic>statistical modeling</topic><topic>Statistical models</topic><topic>Video boards</topic><topic>Virtual Reality</topic><topic>Visual Perception - physiology</topic><topic>Visual perception driven algorithms</topic><topic>Visual realism</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Shaojing</creatorcontrib><creatorcontrib>Ng, Tian-Tsong</creatorcontrib><creatorcontrib>Koenig, Bryan Lee</creatorcontrib><creatorcontrib>Herberg, Jonathan Samuel</creatorcontrib><creatorcontrib>Jiang, Ming</creatorcontrib><creatorcontrib>Shen, Zhiqi</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Shaojing</au><au>Ng, Tian-Tsong</au><au>Koenig, Bryan Lee</au><au>Herberg, Jonathan Samuel</au><au>Jiang, Ming</au><au>Shen, Zhiqi</au><au>Zhao, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Visual Realism: From Human Perception to Machine Computation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>40</volume><issue>9</issue><spage>2180</spage><epage>2193</epage><pages>2180-2193</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2,520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and deep convolutional neural network models to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866484</pmid><doi>10.1109/TPAMI.2017.2747150</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7744-1133</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2018-09, Vol.40 (9), p.2180-2193 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2117113965 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Benchmark testing Computation Computational modeling Computer Graphics convolutional neural network Fabric analysis Face Female human psychophysics Humans Judgments Machine Learning Male Mathematical models Models, Statistical Neural Networks (Computer) Psychophysics - methods Realism Rendering (computer graphics) Retouching Solid modeling statistical modeling Statistical models Video boards Virtual Reality Visual Perception - physiology Visual perception driven algorithms Visual realism Visualization |
title | Image Visual Realism: From Human Perception to Machine Computation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Visual%20Realism:%20From%20Human%20Perception%20to%20Machine%20Computation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Fan,%20Shaojing&rft.date=2018-09-01&rft.volume=40&rft.issue=9&rft.spage=2180&rft.epage=2193&rft.pages=2180-2193&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2747150&rft_dat=%3Cproquest_pubme%3E2117113965%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117113965&rft_id=info:pmid/28866484&rft_ieee_id=8022957&rfr_iscdi=true |