Loading…

Image Visual Realism: From Human Perception to Machine Computation

Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensiv...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2018-09, Vol.40 (9), p.2180-2193
Main Authors: Fan, Shaojing, Ng, Tian-Tsong, Koenig, Bryan Lee, Herberg, Jonathan Samuel, Jiang, Ming, Shen, Zhiqi, Zhao, Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3
cites cdi_FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3
container_end_page 2193
container_issue 9
container_start_page 2180
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 40
creator Fan, Shaojing
Ng, Tian-Tsong
Koenig, Bryan Lee
Herberg, Jonathan Samuel
Jiang, Ming
Shen, Zhiqi
Zhao, Qi
description Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2,520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and deep convolutional neural network models to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.
doi_str_mv 10.1109/TPAMI.2017.2747150
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2117113965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8022957</ieee_id><sourcerecordid>2117113965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSuh_Z7K63WqwttFikel02m4lGsknMJgf_vamtPXgamHlmmPdB6JLgMSFY3W3Wk9ViTDERYyoiQTg-QkOimAoZZ-oYDTGJaSgllQN05v0nxiTimJ2iAZUyjiMZDdHDwpl3CN5y35kieAFT5N7dB7OmcsG8c6YM1tBYqNu8KoO2ClbGfuQlBNPK1V1rtu1zdJKZwsPFvo7Q6-xxM52Hy-enxXSyDC3jpA1TLGIplI0EsyoWOGGpTVVGMLOcmSyNMmyZAS55nLKEQaTihIjUgJBZKgSwEbrd3a2b6qsD32qXewtFYUqoOq_75DzCtM_fozf_0M-qa8r-O00JEYQwFfOeojvKNpX3DWS6bnJnmm9NsN4a1r-G9daw3hvul673p7vEQXpY-VPaA1c7IAeAw1hiShUX7AftB34W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117113965</pqid></control><display><type>article</type><title>Image Visual Realism: From Human Perception to Machine Computation</title><source>IEEE Xplore (Online service)</source><creator>Fan, Shaojing ; Ng, Tian-Tsong ; Koenig, Bryan Lee ; Herberg, Jonathan Samuel ; Jiang, Ming ; Shen, Zhiqi ; Zhao, Qi</creator><creatorcontrib>Fan, Shaojing ; Ng, Tian-Tsong ; Koenig, Bryan Lee ; Herberg, Jonathan Samuel ; Jiang, Ming ; Shen, Zhiqi ; Zhao, Qi</creatorcontrib><description>Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2,520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and deep convolutional neural network models to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2747150</identifier><identifier>PMID: 28866484</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Computation ; Computational modeling ; Computer Graphics ; convolutional neural network ; Fabric analysis ; Face ; Female ; human psychophysics ; Humans ; Judgments ; Machine Learning ; Male ; Mathematical models ; Models, Statistical ; Neural Networks (Computer) ; Psychophysics - methods ; Realism ; Rendering (computer graphics) ; Retouching ; Solid modeling ; statistical modeling ; Statistical models ; Video boards ; Virtual Reality ; Visual Perception - physiology ; Visual perception driven algorithms ; Visual realism ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-09, Vol.40 (9), p.2180-2193</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3</citedby><cites>FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3</cites><orcidid>0000-0002-7744-1133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8022957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Shaojing</creatorcontrib><creatorcontrib>Ng, Tian-Tsong</creatorcontrib><creatorcontrib>Koenig, Bryan Lee</creatorcontrib><creatorcontrib>Herberg, Jonathan Samuel</creatorcontrib><creatorcontrib>Jiang, Ming</creatorcontrib><creatorcontrib>Shen, Zhiqi</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><title>Image Visual Realism: From Human Perception to Machine Computation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2,520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and deep convolutional neural network models to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer Graphics</subject><subject>convolutional neural network</subject><subject>Fabric analysis</subject><subject>Face</subject><subject>Female</subject><subject>human psychophysics</subject><subject>Humans</subject><subject>Judgments</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Neural Networks (Computer)</subject><subject>Psychophysics - methods</subject><subject>Realism</subject><subject>Rendering (computer graphics)</subject><subject>Retouching</subject><subject>Solid modeling</subject><subject>statistical modeling</subject><subject>Statistical models</subject><subject>Video boards</subject><subject>Virtual Reality</subject><subject>Visual Perception - physiology</subject><subject>Visual perception driven algorithms</subject><subject>Visual realism</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSuh_Z7K63WqwttFikel02m4lGsknMJgf_vamtPXgamHlmmPdB6JLgMSFY3W3Wk9ViTDERYyoiQTg-QkOimAoZZ-oYDTGJaSgllQN05v0nxiTimJ2iAZUyjiMZDdHDwpl3CN5y35kieAFT5N7dB7OmcsG8c6YM1tBYqNu8KoO2ClbGfuQlBNPK1V1rtu1zdJKZwsPFvo7Q6-xxM52Hy-enxXSyDC3jpA1TLGIplI0EsyoWOGGpTVVGMLOcmSyNMmyZAS55nLKEQaTihIjUgJBZKgSwEbrd3a2b6qsD32qXewtFYUqoOq_75DzCtM_fozf_0M-qa8r-O00JEYQwFfOeojvKNpX3DWS6bnJnmm9NsN4a1r-G9daw3hvul673p7vEQXpY-VPaA1c7IAeAw1hiShUX7AftB34W</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Fan, Shaojing</creator><creator>Ng, Tian-Tsong</creator><creator>Koenig, Bryan Lee</creator><creator>Herberg, Jonathan Samuel</creator><creator>Jiang, Ming</creator><creator>Shen, Zhiqi</creator><creator>Zhao, Qi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7744-1133</orcidid></search><sort><creationdate>20180901</creationdate><title>Image Visual Realism: From Human Perception to Machine Computation</title><author>Fan, Shaojing ; Ng, Tian-Tsong ; Koenig, Bryan Lee ; Herberg, Jonathan Samuel ; Jiang, Ming ; Shen, Zhiqi ; Zhao, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer Graphics</topic><topic>convolutional neural network</topic><topic>Fabric analysis</topic><topic>Face</topic><topic>Female</topic><topic>human psychophysics</topic><topic>Humans</topic><topic>Judgments</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Neural Networks (Computer)</topic><topic>Psychophysics - methods</topic><topic>Realism</topic><topic>Rendering (computer graphics)</topic><topic>Retouching</topic><topic>Solid modeling</topic><topic>statistical modeling</topic><topic>Statistical models</topic><topic>Video boards</topic><topic>Virtual Reality</topic><topic>Visual Perception - physiology</topic><topic>Visual perception driven algorithms</topic><topic>Visual realism</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Shaojing</creatorcontrib><creatorcontrib>Ng, Tian-Tsong</creatorcontrib><creatorcontrib>Koenig, Bryan Lee</creatorcontrib><creatorcontrib>Herberg, Jonathan Samuel</creatorcontrib><creatorcontrib>Jiang, Ming</creatorcontrib><creatorcontrib>Shen, Zhiqi</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Shaojing</au><au>Ng, Tian-Tsong</au><au>Koenig, Bryan Lee</au><au>Herberg, Jonathan Samuel</au><au>Jiang, Ming</au><au>Shen, Zhiqi</au><au>Zhao, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Visual Realism: From Human Perception to Machine Computation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>40</volume><issue>9</issue><spage>2180</spage><epage>2193</epage><pages>2180-2193</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2,520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and deep convolutional neural network models to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866484</pmid><doi>10.1109/TPAMI.2017.2747150</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7744-1133</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2018-09, Vol.40 (9), p.2180-2193
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2117113965
source IEEE Xplore (Online service)
subjects Artificial neural networks
Benchmark testing
Computation
Computational modeling
Computer Graphics
convolutional neural network
Fabric analysis
Face
Female
human psychophysics
Humans
Judgments
Machine Learning
Male
Mathematical models
Models, Statistical
Neural Networks (Computer)
Psychophysics - methods
Realism
Rendering (computer graphics)
Retouching
Solid modeling
statistical modeling
Statistical models
Video boards
Virtual Reality
Visual Perception - physiology
Visual perception driven algorithms
Visual realism
Visualization
title Image Visual Realism: From Human Perception to Machine Computation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Visual%20Realism:%20From%20Human%20Perception%20to%20Machine%20Computation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Fan,%20Shaojing&rft.date=2018-09-01&rft.volume=40&rft.issue=9&rft.spage=2180&rft.epage=2193&rft.pages=2180-2193&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2747150&rft_dat=%3Cproquest_pubme%3E2117113965%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-d076879c473c9670b3dcd9f103c53afd4f0c3ae5856d3b3e496b17dae78fd77e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117113965&rft_id=info:pmid/28866484&rft_ieee_id=8022957&rfr_iscdi=true