Loading…
WASP: Selective Data Prefetching with Monitoring Runtime Warp Progress on GPUs
This paper proposes a new data prefetching technique for Graphics Processing Units (GPUs) called Warp Aware Selective Prefetching (WASP). The main idea of WASP is to dynamically select warps whose progress is slower than that of the current warp as prefetching target warps. Under the in-order instru...
Saved in:
Published in: | IEEE transactions on computers 2018-09, Vol.67 (9), p.1366-1373 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c289t-3177343e1e9980e29451291d2143e4025a2b59b60808cbcee61664c0ada30013 |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-3177343e1e9980e29451291d2143e4025a2b59b60808cbcee61664c0ada30013 |
container_end_page | 1373 |
container_issue | 9 |
container_start_page | 1366 |
container_title | IEEE transactions on computers |
container_volume | 67 |
creator | Oh, Yunho Yoon, Myung Kuk Park, Jong Hyun Park, Yongjun Ro, Won Woo |
description | This paper proposes a new data prefetching technique for Graphics Processing Units (GPUs) called Warp Aware Selective Prefetching (WASP). The main idea of WASP is to dynamically select warps whose progress is slower than that of the current warp as prefetching target warps. Under the in-order instruction execution model of GPUs, these prefetching target warps will certainly execute the same load as the current warp. Exploiting that, WASP prefetches the data for prefetching target warps, which allows the prefetched data to be accurately accessed. To simply verify the progress of the warps, WASP monitors the counts of the dynamic load executions for all warps. When a warp executes a load, WASP searches the warps with lower load execution counts than the current warp and generates the prefetch requests for them. In our evaluation, WASP achieves a 16.8 percent speedup compared to the baseline GPU. |
doi_str_mv | 10.1109/TC.2018.2813379 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117122576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8309426</ieee_id><sourcerecordid>2117122576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-3177343e1e9980e29451291d2143e4025a2b59b60808cbcee61664c0ada30013</originalsourceid><addsrcrecordid>eNo9kEFPwkAQhTdGExE9e_CyiefCzG677XozVdEElUgNx00pA5RAi7uLxn_vEoinycx8bybvMXaN0EME3S_yngDMeiJDKVN9wjqYJGmkdaJOWQfCKtIyhnN24dwKAJQA3WFvk_vx6I6PaU2Vr7-JP5S-5CNLc_LVsm4W_Kf2S_7aNrVv7b7_2DW-3hCflHYbwHZhyTneNnww-nSX7Gxerh1dHWuXFU-PRf4cDd8HL_n9MKpEpn0kMU1lLAlJ6wxI6DhBoXEmMAxjEEkppomeKsggq6YVkUKl4grKWSmDE9llt4ezW9t-7ch5s2p3tgkfjUBMUYgkVYHqH6jKts4FS2Zr601pfw2C2WdmitzsMzPHzILi5qCoieifziToWCj5B0naZPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117122576</pqid></control><display><type>article</type><title>WASP: Selective Data Prefetching with Monitoring Runtime Warp Progress on GPUs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Oh, Yunho ; Yoon, Myung Kuk ; Park, Jong Hyun ; Park, Yongjun ; Ro, Won Woo</creator><creatorcontrib>Oh, Yunho ; Yoon, Myung Kuk ; Park, Jong Hyun ; Park, Yongjun ; Ro, Won Woo</creatorcontrib><description>This paper proposes a new data prefetching technique for Graphics Processing Units (GPUs) called Warp Aware Selective Prefetching (WASP). The main idea of WASP is to dynamically select warps whose progress is slower than that of the current warp as prefetching target warps. Under the in-order instruction execution model of GPUs, these prefetching target warps will certainly execute the same load as the current warp. Exploiting that, WASP prefetches the data for prefetching target warps, which allows the prefetched data to be accurately accessed. To simply verify the progress of the warps, WASP monitors the counts of the dynamic load executions for all warps. When a warp executes a load, WASP searches the warps with lower load execution counts than the current warp and generates the prefetch requests for them. In our evaluation, WASP achieves a 16.8 percent speedup compared to the baseline GPU.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2018.2813379</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>cache performance ; data prefetching ; Dynamic loads ; GPGPU ; Graphics processing units ; Hardware ; Message systems ; Micromechanical devices ; Monitoring ; Prefetching ; Warp ; warp scheduling</subject><ispartof>IEEE transactions on computers, 2018-09, Vol.67 (9), p.1366-1373</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-3177343e1e9980e29451291d2143e4025a2b59b60808cbcee61664c0ada30013</citedby><cites>FETCH-LOGICAL-c289t-3177343e1e9980e29451291d2143e4025a2b59b60808cbcee61664c0ada30013</cites><orcidid>0000-0001-5390-6445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8309426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Oh, Yunho</creatorcontrib><creatorcontrib>Yoon, Myung Kuk</creatorcontrib><creatorcontrib>Park, Jong Hyun</creatorcontrib><creatorcontrib>Park, Yongjun</creatorcontrib><creatorcontrib>Ro, Won Woo</creatorcontrib><title>WASP: Selective Data Prefetching with Monitoring Runtime Warp Progress on GPUs</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>This paper proposes a new data prefetching technique for Graphics Processing Units (GPUs) called Warp Aware Selective Prefetching (WASP). The main idea of WASP is to dynamically select warps whose progress is slower than that of the current warp as prefetching target warps. Under the in-order instruction execution model of GPUs, these prefetching target warps will certainly execute the same load as the current warp. Exploiting that, WASP prefetches the data for prefetching target warps, which allows the prefetched data to be accurately accessed. To simply verify the progress of the warps, WASP monitors the counts of the dynamic load executions for all warps. When a warp executes a load, WASP searches the warps with lower load execution counts than the current warp and generates the prefetch requests for them. In our evaluation, WASP achieves a 16.8 percent speedup compared to the baseline GPU.</description><subject>cache performance</subject><subject>data prefetching</subject><subject>Dynamic loads</subject><subject>GPGPU</subject><subject>Graphics processing units</subject><subject>Hardware</subject><subject>Message systems</subject><subject>Micromechanical devices</subject><subject>Monitoring</subject><subject>Prefetching</subject><subject>Warp</subject><subject>warp scheduling</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwkAQhTdGExE9e_CyiefCzG677XozVdEElUgNx00pA5RAi7uLxn_vEoinycx8bybvMXaN0EME3S_yngDMeiJDKVN9wjqYJGmkdaJOWQfCKtIyhnN24dwKAJQA3WFvk_vx6I6PaU2Vr7-JP5S-5CNLc_LVsm4W_Kf2S_7aNrVv7b7_2DW-3hCflHYbwHZhyTneNnww-nSX7Gxerh1dHWuXFU-PRf4cDd8HL_n9MKpEpn0kMU1lLAlJ6wxI6DhBoXEmMAxjEEkppomeKsggq6YVkUKl4grKWSmDE9llt4ezW9t-7ch5s2p3tgkfjUBMUYgkVYHqH6jKts4FS2Zr601pfw2C2WdmitzsMzPHzILi5qCoieifziToWCj5B0naZPk</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Oh, Yunho</creator><creator>Yoon, Myung Kuk</creator><creator>Park, Jong Hyun</creator><creator>Park, Yongjun</creator><creator>Ro, Won Woo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5390-6445</orcidid></search><sort><creationdate>20180901</creationdate><title>WASP: Selective Data Prefetching with Monitoring Runtime Warp Progress on GPUs</title><author>Oh, Yunho ; Yoon, Myung Kuk ; Park, Jong Hyun ; Park, Yongjun ; Ro, Won Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-3177343e1e9980e29451291d2143e4025a2b59b60808cbcee61664c0ada30013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>cache performance</topic><topic>data prefetching</topic><topic>Dynamic loads</topic><topic>GPGPU</topic><topic>Graphics processing units</topic><topic>Hardware</topic><topic>Message systems</topic><topic>Micromechanical devices</topic><topic>Monitoring</topic><topic>Prefetching</topic><topic>Warp</topic><topic>warp scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Yunho</creatorcontrib><creatorcontrib>Yoon, Myung Kuk</creatorcontrib><creatorcontrib>Park, Jong Hyun</creatorcontrib><creatorcontrib>Park, Yongjun</creatorcontrib><creatorcontrib>Ro, Won Woo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Yunho</au><au>Yoon, Myung Kuk</au><au>Park, Jong Hyun</au><au>Park, Yongjun</au><au>Ro, Won Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WASP: Selective Data Prefetching with Monitoring Runtime Warp Progress on GPUs</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>67</volume><issue>9</issue><spage>1366</spage><epage>1373</epage><pages>1366-1373</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>This paper proposes a new data prefetching technique for Graphics Processing Units (GPUs) called Warp Aware Selective Prefetching (WASP). The main idea of WASP is to dynamically select warps whose progress is slower than that of the current warp as prefetching target warps. Under the in-order instruction execution model of GPUs, these prefetching target warps will certainly execute the same load as the current warp. Exploiting that, WASP prefetches the data for prefetching target warps, which allows the prefetched data to be accurately accessed. To simply verify the progress of the warps, WASP monitors the counts of the dynamic load executions for all warps. When a warp executes a load, WASP searches the warps with lower load execution counts than the current warp and generates the prefetch requests for them. In our evaluation, WASP achieves a 16.8 percent speedup compared to the baseline GPU.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2018.2813379</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5390-6445</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2018-09, Vol.67 (9), p.1366-1373 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_proquest_journals_2117122576 |
source | IEEE Electronic Library (IEL) Journals |
subjects | cache performance data prefetching Dynamic loads GPGPU Graphics processing units Hardware Message systems Micromechanical devices Monitoring Prefetching Warp warp scheduling |
title | WASP: Selective Data Prefetching with Monitoring Runtime Warp Progress on GPUs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WASP:%20Selective%20Data%20Prefetching%20with%20Monitoring%20Runtime%20Warp%20Progress%20on%20GPUs&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Oh,%20Yunho&rft.date=2018-09-01&rft.volume=67&rft.issue=9&rft.spage=1366&rft.epage=1373&rft.pages=1366-1373&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2018.2813379&rft_dat=%3Cproquest_cross%3E2117122576%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-3177343e1e9980e29451291d2143e4025a2b59b60808cbcee61664c0ada30013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117122576&rft_id=info:pmid/&rft_ieee_id=8309426&rfr_iscdi=true |