Loading…

Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts

The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2018-09, Vol.8 (5), p.1208-1214
Main Authors: Schube, Jorg, Tutsch, Leonard, Fellmeth, Tobias, Bivour, Martin, Feldmann, Frank, Hatt, Thibaud, Maier, Florian, Keding, Roman, Clement, Florian, Glunz, Stefan W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093
cites cdi_FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093
container_end_page 1214
container_issue 5
container_start_page 1208
container_title IEEE journal of photovoltaics
container_volume 8
creator Schube, Jorg
Tutsch, Leonard
Fellmeth, Tobias
Bivour, Martin
Feldmann, Frank
Hatt, Thibaud
Maier, Florian
Keding, Roman
Clement, Florian
Glunz, Stefan W.
description The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows and, consequently, differ by their electrical and optical properties. All pastes are analyzed by means of simultaneous thermogravimetry-differential scanning calorimetry. After printing and contact formation processing, the lateral resistivity of the metal contacts and their contact resistivity to the indium tin oxide layers are determined. Furthermore, the microstructure of the metal electrodes is investigated to gain a deeper understanding of the underlying contact formation mechanisms. Besides low-temperature curing at T curing, low  = 180-220 °C, as conventionally applied to silicon heterojunction solar cells, photonic sintering and thermal curing at medium temperatures T curing, mid  = 250-350 °C are utilized. The higher curing temperatures in the range of T curing, mid enhance the sintering and densification processes of the different pastes, and thereby, lateral resistivities of 2.4-3.5 μΩ⋅cm and contact resistivities of 1.0-2.5 mΩ⋅cm 2 are achieved. The results indicate a promising industry-relevant non-firing-through metallization approach for, e.g., poly-silicon-based structures like tunnel oxide passivating contacts, which allow comparatively high temperatures for contact formation processing. With thermal curing at T curing, low and photonic sintering, both compatible with temperature-sensitive silicon heterojunction solar cells, lateral finger resistivities of 6.5-9.4 μΩ⋅cm and contact resistivities of 1.2-2.5 mΩ⋅cm 2 are achieved. Thereby, photonic sintering has the potential of a significantly reduced process time from several minutes down to 1-4 ms.
doi_str_mv 10.1109/JPHOTOV.2018.2859768
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2117148503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8425640</ieee_id><sourcerecordid>2117148503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxosoOHR_gT4EfO5M0iZNH6WomxQ63NTHkqVXzejSmWTT_fdmbO7guDv4vu_gF0W3BI8Iwfn9y3Rczav3EcVEjKhgecbFWTSghPE4SXFy_r8nglxGQ-eWOBTHjPN0EPmy_4lfwWnn9Vb7HZopC2DiqdXGQ4OK3nipvEO9QRPT6M0KzbVB1a9uAJVyB9ahtrdopjutgmbWd9KiArrOoQ_tv9BUOqe30mvzeQq7ji5a2TkYHudV9Pb0OC_GcVk9T4qHMlY0z32cAFMNzxSXSWhGVAqwyMmCNkLgnEnCGQeeLWiWhxMkxapNsWwEpUxQnCdX0d0hd2377w04Xy_7jTXhZU0JyUgqGE6CKj2olO2ds9DWa6tX0u5qgus94vqIuN4jro-Ig-3mYNMAcLKIlDIeqP8BOaZ4sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117148503</pqid></control><display><type>article</type><title>Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Schube, Jorg ; Tutsch, Leonard ; Fellmeth, Tobias ; Bivour, Martin ; Feldmann, Frank ; Hatt, Thibaud ; Maier, Florian ; Keding, Roman ; Clement, Florian ; Glunz, Stefan W.</creator><creatorcontrib>Schube, Jorg ; Tutsch, Leonard ; Fellmeth, Tobias ; Bivour, Martin ; Feldmann, Frank ; Hatt, Thibaud ; Maier, Florian ; Keding, Roman ; Clement, Florian ; Glunz, Stefan W.</creatorcontrib><description>The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows and, consequently, differ by their electrical and optical properties. All pastes are analyzed by means of simultaneous thermogravimetry-differential scanning calorimetry. After printing and contact formation processing, the lateral resistivity of the metal contacts and their contact resistivity to the indium tin oxide layers are determined. Furthermore, the microstructure of the metal electrodes is investigated to gain a deeper understanding of the underlying contact formation mechanisms. Besides low-temperature curing at T curing, low  = 180-220 °C, as conventionally applied to silicon heterojunction solar cells, photonic sintering and thermal curing at medium temperatures T curing, mid  = 250-350 °C are utilized. The higher curing temperatures in the range of T curing, mid enhance the sintering and densification processes of the different pastes, and thereby, lateral resistivities of 2.4-3.5 μΩ⋅cm and contact resistivities of 1.0-2.5 mΩ⋅cm 2 are achieved. The results indicate a promising industry-relevant non-firing-through metallization approach for, e.g., poly-silicon-based structures like tunnel oxide passivating contacts, which allow comparatively high temperatures for contact formation processing. With thermal curing at T curing, low and photonic sintering, both compatible with temperature-sensitive silicon heterojunction solar cells, lateral finger resistivities of 6.5-9.4 μΩ⋅cm and contact resistivities of 1.2-2.5 mΩ⋅cm 2 are achieved. Thereby, photonic sintering has the potential of a significantly reduced process time from several minutes down to 1-4 ms.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2018.2859768</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Conductivity ; Curing ; Densification ; Differential scanning calorimetry ; Electric contacts ; Electrical resistivity ; Heterojunctions ; Indium tin oxide ; Indium tin oxide (ITO) ; Indium tin oxides ; low-temperature silver pastes ; Metallizing ; Metals ; Optical properties ; passivating contacts ; Pastes ; photonic sintering ; Photonics ; Photovoltaic cells ; Screen printing ; Silicon ; Silver ; Sintering ; Solar cells ; Temperature ; Thermogravimetry</subject><ispartof>IEEE journal of photovoltaics, 2018-09, Vol.8 (5), p.1208-1214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093</citedby><cites>FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093</cites><orcidid>0000-0001-9112-3062 ; 0000-0002-9443-9668 ; 0000-0002-9877-2097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8425640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Schube, Jorg</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Fellmeth, Tobias</creatorcontrib><creatorcontrib>Bivour, Martin</creatorcontrib><creatorcontrib>Feldmann, Frank</creatorcontrib><creatorcontrib>Hatt, Thibaud</creatorcontrib><creatorcontrib>Maier, Florian</creatorcontrib><creatorcontrib>Keding, Roman</creatorcontrib><creatorcontrib>Clement, Florian</creatorcontrib><creatorcontrib>Glunz, Stefan W.</creatorcontrib><title>Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows and, consequently, differ by their electrical and optical properties. All pastes are analyzed by means of simultaneous thermogravimetry-differential scanning calorimetry. After printing and contact formation processing, the lateral resistivity of the metal contacts and their contact resistivity to the indium tin oxide layers are determined. Furthermore, the microstructure of the metal electrodes is investigated to gain a deeper understanding of the underlying contact formation mechanisms. Besides low-temperature curing at T curing, low  = 180-220 °C, as conventionally applied to silicon heterojunction solar cells, photonic sintering and thermal curing at medium temperatures T curing, mid  = 250-350 °C are utilized. The higher curing temperatures in the range of T curing, mid enhance the sintering and densification processes of the different pastes, and thereby, lateral resistivities of 2.4-3.5 μΩ⋅cm and contact resistivities of 1.0-2.5 mΩ⋅cm 2 are achieved. The results indicate a promising industry-relevant non-firing-through metallization approach for, e.g., poly-silicon-based structures like tunnel oxide passivating contacts, which allow comparatively high temperatures for contact formation processing. With thermal curing at T curing, low and photonic sintering, both compatible with temperature-sensitive silicon heterojunction solar cells, lateral finger resistivities of 6.5-9.4 μΩ⋅cm and contact resistivities of 1.2-2.5 mΩ⋅cm 2 are achieved. Thereby, photonic sintering has the potential of a significantly reduced process time from several minutes down to 1-4 ms.</description><subject>Conductivity</subject><subject>Curing</subject><subject>Densification</subject><subject>Differential scanning calorimetry</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Heterojunctions</subject><subject>Indium tin oxide</subject><subject>Indium tin oxide (ITO)</subject><subject>Indium tin oxides</subject><subject>low-temperature silver pastes</subject><subject>Metallizing</subject><subject>Metals</subject><subject>Optical properties</subject><subject>passivating contacts</subject><subject>Pastes</subject><subject>photonic sintering</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Screen printing</subject><subject>Silicon</subject><subject>Silver</subject><subject>Sintering</subject><subject>Solar cells</subject><subject>Temperature</subject><subject>Thermogravimetry</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxosoOHR_gT4EfO5M0iZNH6WomxQ63NTHkqVXzejSmWTT_fdmbO7guDv4vu_gF0W3BI8Iwfn9y3Rczav3EcVEjKhgecbFWTSghPE4SXFy_r8nglxGQ-eWOBTHjPN0EPmy_4lfwWnn9Vb7HZopC2DiqdXGQ4OK3nipvEO9QRPT6M0KzbVB1a9uAJVyB9ahtrdopjutgmbWd9KiArrOoQ_tv9BUOqe30mvzeQq7ji5a2TkYHudV9Pb0OC_GcVk9T4qHMlY0z32cAFMNzxSXSWhGVAqwyMmCNkLgnEnCGQeeLWiWhxMkxapNsWwEpUxQnCdX0d0hd2377w04Xy_7jTXhZU0JyUgqGE6CKj2olO2ds9DWa6tX0u5qgus94vqIuN4jro-Ig-3mYNMAcLKIlDIeqP8BOaZ4sg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Schube, Jorg</creator><creator>Tutsch, Leonard</creator><creator>Fellmeth, Tobias</creator><creator>Bivour, Martin</creator><creator>Feldmann, Frank</creator><creator>Hatt, Thibaud</creator><creator>Maier, Florian</creator><creator>Keding, Roman</creator><creator>Clement, Florian</creator><creator>Glunz, Stefan W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9112-3062</orcidid><orcidid>https://orcid.org/0000-0002-9443-9668</orcidid><orcidid>https://orcid.org/0000-0002-9877-2097</orcidid></search><sort><creationdate>20180901</creationdate><title>Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts</title><author>Schube, Jorg ; Tutsch, Leonard ; Fellmeth, Tobias ; Bivour, Martin ; Feldmann, Frank ; Hatt, Thibaud ; Maier, Florian ; Keding, Roman ; Clement, Florian ; Glunz, Stefan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conductivity</topic><topic>Curing</topic><topic>Densification</topic><topic>Differential scanning calorimetry</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Heterojunctions</topic><topic>Indium tin oxide</topic><topic>Indium tin oxide (ITO)</topic><topic>Indium tin oxides</topic><topic>low-temperature silver pastes</topic><topic>Metallizing</topic><topic>Metals</topic><topic>Optical properties</topic><topic>passivating contacts</topic><topic>Pastes</topic><topic>photonic sintering</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Screen printing</topic><topic>Silicon</topic><topic>Silver</topic><topic>Sintering</topic><topic>Solar cells</topic><topic>Temperature</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schube, Jorg</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Fellmeth, Tobias</creatorcontrib><creatorcontrib>Bivour, Martin</creatorcontrib><creatorcontrib>Feldmann, Frank</creatorcontrib><creatorcontrib>Hatt, Thibaud</creatorcontrib><creatorcontrib>Maier, Florian</creatorcontrib><creatorcontrib>Keding, Roman</creatorcontrib><creatorcontrib>Clement, Florian</creatorcontrib><creatorcontrib>Glunz, Stefan W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schube, Jorg</au><au>Tutsch, Leonard</au><au>Fellmeth, Tobias</au><au>Bivour, Martin</au><au>Feldmann, Frank</au><au>Hatt, Thibaud</au><au>Maier, Florian</au><au>Keding, Roman</au><au>Clement, Florian</au><au>Glunz, Stefan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>8</volume><issue>5</issue><spage>1208</spage><epage>1214</epage><pages>1208-1214</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows and, consequently, differ by their electrical and optical properties. All pastes are analyzed by means of simultaneous thermogravimetry-differential scanning calorimetry. After printing and contact formation processing, the lateral resistivity of the metal contacts and their contact resistivity to the indium tin oxide layers are determined. Furthermore, the microstructure of the metal electrodes is investigated to gain a deeper understanding of the underlying contact formation mechanisms. Besides low-temperature curing at T curing, low  = 180-220 °C, as conventionally applied to silicon heterojunction solar cells, photonic sintering and thermal curing at medium temperatures T curing, mid  = 250-350 °C are utilized. The higher curing temperatures in the range of T curing, mid enhance the sintering and densification processes of the different pastes, and thereby, lateral resistivities of 2.4-3.5 μΩ⋅cm and contact resistivities of 1.0-2.5 mΩ⋅cm 2 are achieved. The results indicate a promising industry-relevant non-firing-through metallization approach for, e.g., poly-silicon-based structures like tunnel oxide passivating contacts, which allow comparatively high temperatures for contact formation processing. With thermal curing at T curing, low and photonic sintering, both compatible with temperature-sensitive silicon heterojunction solar cells, lateral finger resistivities of 6.5-9.4 μΩ⋅cm and contact resistivities of 1.2-2.5 mΩ⋅cm 2 are achieved. Thereby, photonic sintering has the potential of a significantly reduced process time from several minutes down to 1-4 ms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2018.2859768</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9112-3062</orcidid><orcidid>https://orcid.org/0000-0002-9443-9668</orcidid><orcidid>https://orcid.org/0000-0002-9877-2097</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2018-09, Vol.8 (5), p.1208-1214
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_2117148503
source IEEE Electronic Library (IEL) Journals
subjects Conductivity
Curing
Densification
Differential scanning calorimetry
Electric contacts
Electrical resistivity
Heterojunctions
Indium tin oxide
Indium tin oxide (ITO)
Indium tin oxides
low-temperature silver pastes
Metallizing
Metals
Optical properties
passivating contacts
Pastes
photonic sintering
Photonics
Photovoltaic cells
Screen printing
Silicon
Silver
Sintering
Solar cells
Temperature
Thermogravimetry
title Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Resistivity%20Screen-Printed%20Contacts%20on%20Indium%20Tin%20Oxide%20Layers%20for%20Silicon%20Solar%20Cells%20With%20Passivating%20Contacts&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Schube,%20Jorg&rft.date=2018-09-01&rft.volume=8&rft.issue=5&rft.spage=1208&rft.epage=1214&rft.pages=1208-1214&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2018.2859768&rft_dat=%3Cproquest_ieee_%3E2117148503%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117148503&rft_id=info:pmid/&rft_ieee_id=8425640&rfr_iscdi=true