Loading…
Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts
The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows...
Saved in:
Published in: | IEEE journal of photovoltaics 2018-09, Vol.8 (5), p.1208-1214 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093 |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093 |
container_end_page | 1214 |
container_issue | 5 |
container_start_page | 1208 |
container_title | IEEE journal of photovoltaics |
container_volume | 8 |
creator | Schube, Jorg Tutsch, Leonard Fellmeth, Tobias Bivour, Martin Feldmann, Frank Hatt, Thibaud Maier, Florian Keding, Roman Clement, Florian Glunz, Stefan W. |
description | The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows and, consequently, differ by their electrical and optical properties. All pastes are analyzed by means of simultaneous thermogravimetry-differential scanning calorimetry. After printing and contact formation processing, the lateral resistivity of the metal contacts and their contact resistivity to the indium tin oxide layers are determined. Furthermore, the microstructure of the metal electrodes is investigated to gain a deeper understanding of the underlying contact formation mechanisms. Besides low-temperature curing at T curing, low = 180-220 °C, as conventionally applied to silicon heterojunction solar cells, photonic sintering and thermal curing at medium temperatures T curing, mid = 250-350 °C are utilized. The higher curing temperatures in the range of T curing, mid enhance the sintering and densification processes of the different pastes, and thereby, lateral resistivities of 2.4-3.5 μΩ⋅cm and contact resistivities of 1.0-2.5 mΩ⋅cm 2 are achieved. The results indicate a promising industry-relevant non-firing-through metallization approach for, e.g., poly-silicon-based structures like tunnel oxide passivating contacts, which allow comparatively high temperatures for contact formation processing. With thermal curing at T curing, low and photonic sintering, both compatible with temperature-sensitive silicon heterojunction solar cells, lateral finger resistivities of 6.5-9.4 μΩ⋅cm and contact resistivities of 1.2-2.5 mΩ⋅cm 2 are achieved. Thereby, photonic sintering has the potential of a significantly reduced process time from several minutes down to 1-4 ms. |
doi_str_mv | 10.1109/JPHOTOV.2018.2859768 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2117148503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8425640</ieee_id><sourcerecordid>2117148503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxosoOHR_gT4EfO5M0iZNH6WomxQ63NTHkqVXzejSmWTT_fdmbO7guDv4vu_gF0W3BI8Iwfn9y3Rczav3EcVEjKhgecbFWTSghPE4SXFy_r8nglxGQ-eWOBTHjPN0EPmy_4lfwWnn9Vb7HZopC2DiqdXGQ4OK3nipvEO9QRPT6M0KzbVB1a9uAJVyB9ahtrdopjutgmbWd9KiArrOoQ_tv9BUOqe30mvzeQq7ji5a2TkYHudV9Pb0OC_GcVk9T4qHMlY0z32cAFMNzxSXSWhGVAqwyMmCNkLgnEnCGQeeLWiWhxMkxapNsWwEpUxQnCdX0d0hd2377w04Xy_7jTXhZU0JyUgqGE6CKj2olO2ds9DWa6tX0u5qgus94vqIuN4jro-Ig-3mYNMAcLKIlDIeqP8BOaZ4sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117148503</pqid></control><display><type>article</type><title>Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Schube, Jorg ; Tutsch, Leonard ; Fellmeth, Tobias ; Bivour, Martin ; Feldmann, Frank ; Hatt, Thibaud ; Maier, Florian ; Keding, Roman ; Clement, Florian ; Glunz, Stefan W.</creator><creatorcontrib>Schube, Jorg ; Tutsch, Leonard ; Fellmeth, Tobias ; Bivour, Martin ; Feldmann, Frank ; Hatt, Thibaud ; Maier, Florian ; Keding, Roman ; Clement, Florian ; Glunz, Stefan W.</creatorcontrib><description>The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows and, consequently, differ by their electrical and optical properties. All pastes are analyzed by means of simultaneous thermogravimetry-differential scanning calorimetry. After printing and contact formation processing, the lateral resistivity of the metal contacts and their contact resistivity to the indium tin oxide layers are determined. Furthermore, the microstructure of the metal electrodes is investigated to gain a deeper understanding of the underlying contact formation mechanisms. Besides low-temperature curing at T curing, low = 180-220 °C, as conventionally applied to silicon heterojunction solar cells, photonic sintering and thermal curing at medium temperatures T curing, mid = 250-350 °C are utilized. The higher curing temperatures in the range of T curing, mid enhance the sintering and densification processes of the different pastes, and thereby, lateral resistivities of 2.4-3.5 μΩ⋅cm and contact resistivities of 1.0-2.5 mΩ⋅cm 2 are achieved. The results indicate a promising industry-relevant non-firing-through metallization approach for, e.g., poly-silicon-based structures like tunnel oxide passivating contacts, which allow comparatively high temperatures for contact formation processing. With thermal curing at T curing, low and photonic sintering, both compatible with temperature-sensitive silicon heterojunction solar cells, lateral finger resistivities of 6.5-9.4 μΩ⋅cm and contact resistivities of 1.2-2.5 mΩ⋅cm 2 are achieved. Thereby, photonic sintering has the potential of a significantly reduced process time from several minutes down to 1-4 ms.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2018.2859768</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Conductivity ; Curing ; Densification ; Differential scanning calorimetry ; Electric contacts ; Electrical resistivity ; Heterojunctions ; Indium tin oxide ; Indium tin oxide (ITO) ; Indium tin oxides ; low-temperature silver pastes ; Metallizing ; Metals ; Optical properties ; passivating contacts ; Pastes ; photonic sintering ; Photonics ; Photovoltaic cells ; Screen printing ; Silicon ; Silver ; Sintering ; Solar cells ; Temperature ; Thermogravimetry</subject><ispartof>IEEE journal of photovoltaics, 2018-09, Vol.8 (5), p.1208-1214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093</citedby><cites>FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093</cites><orcidid>0000-0001-9112-3062 ; 0000-0002-9443-9668 ; 0000-0002-9877-2097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8425640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Schube, Jorg</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Fellmeth, Tobias</creatorcontrib><creatorcontrib>Bivour, Martin</creatorcontrib><creatorcontrib>Feldmann, Frank</creatorcontrib><creatorcontrib>Hatt, Thibaud</creatorcontrib><creatorcontrib>Maier, Florian</creatorcontrib><creatorcontrib>Keding, Roman</creatorcontrib><creatorcontrib>Clement, Florian</creatorcontrib><creatorcontrib>Glunz, Stefan W.</creatorcontrib><title>Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows and, consequently, differ by their electrical and optical properties. All pastes are analyzed by means of simultaneous thermogravimetry-differential scanning calorimetry. After printing and contact formation processing, the lateral resistivity of the metal contacts and their contact resistivity to the indium tin oxide layers are determined. Furthermore, the microstructure of the metal electrodes is investigated to gain a deeper understanding of the underlying contact formation mechanisms. Besides low-temperature curing at T curing, low = 180-220 °C, as conventionally applied to silicon heterojunction solar cells, photonic sintering and thermal curing at medium temperatures T curing, mid = 250-350 °C are utilized. The higher curing temperatures in the range of T curing, mid enhance the sintering and densification processes of the different pastes, and thereby, lateral resistivities of 2.4-3.5 μΩ⋅cm and contact resistivities of 1.0-2.5 mΩ⋅cm 2 are achieved. The results indicate a promising industry-relevant non-firing-through metallization approach for, e.g., poly-silicon-based structures like tunnel oxide passivating contacts, which allow comparatively high temperatures for contact formation processing. With thermal curing at T curing, low and photonic sintering, both compatible with temperature-sensitive silicon heterojunction solar cells, lateral finger resistivities of 6.5-9.4 μΩ⋅cm and contact resistivities of 1.2-2.5 mΩ⋅cm 2 are achieved. Thereby, photonic sintering has the potential of a significantly reduced process time from several minutes down to 1-4 ms.</description><subject>Conductivity</subject><subject>Curing</subject><subject>Densification</subject><subject>Differential scanning calorimetry</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Heterojunctions</subject><subject>Indium tin oxide</subject><subject>Indium tin oxide (ITO)</subject><subject>Indium tin oxides</subject><subject>low-temperature silver pastes</subject><subject>Metallizing</subject><subject>Metals</subject><subject>Optical properties</subject><subject>passivating contacts</subject><subject>Pastes</subject><subject>photonic sintering</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Screen printing</subject><subject>Silicon</subject><subject>Silver</subject><subject>Sintering</subject><subject>Solar cells</subject><subject>Temperature</subject><subject>Thermogravimetry</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxosoOHR_gT4EfO5M0iZNH6WomxQ63NTHkqVXzejSmWTT_fdmbO7guDv4vu_gF0W3BI8Iwfn9y3Rczav3EcVEjKhgecbFWTSghPE4SXFy_r8nglxGQ-eWOBTHjPN0EPmy_4lfwWnn9Vb7HZopC2DiqdXGQ4OK3nipvEO9QRPT6M0KzbVB1a9uAJVyB9ahtrdopjutgmbWd9KiArrOoQ_tv9BUOqe30mvzeQq7ji5a2TkYHudV9Pb0OC_GcVk9T4qHMlY0z32cAFMNzxSXSWhGVAqwyMmCNkLgnEnCGQeeLWiWhxMkxapNsWwEpUxQnCdX0d0hd2377w04Xy_7jTXhZU0JyUgqGE6CKj2olO2ds9DWa6tX0u5qgus94vqIuN4jro-Ig-3mYNMAcLKIlDIeqP8BOaZ4sg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Schube, Jorg</creator><creator>Tutsch, Leonard</creator><creator>Fellmeth, Tobias</creator><creator>Bivour, Martin</creator><creator>Feldmann, Frank</creator><creator>Hatt, Thibaud</creator><creator>Maier, Florian</creator><creator>Keding, Roman</creator><creator>Clement, Florian</creator><creator>Glunz, Stefan W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9112-3062</orcidid><orcidid>https://orcid.org/0000-0002-9443-9668</orcidid><orcidid>https://orcid.org/0000-0002-9877-2097</orcidid></search><sort><creationdate>20180901</creationdate><title>Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts</title><author>Schube, Jorg ; Tutsch, Leonard ; Fellmeth, Tobias ; Bivour, Martin ; Feldmann, Frank ; Hatt, Thibaud ; Maier, Florian ; Keding, Roman ; Clement, Florian ; Glunz, Stefan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conductivity</topic><topic>Curing</topic><topic>Densification</topic><topic>Differential scanning calorimetry</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Heterojunctions</topic><topic>Indium tin oxide</topic><topic>Indium tin oxide (ITO)</topic><topic>Indium tin oxides</topic><topic>low-temperature silver pastes</topic><topic>Metallizing</topic><topic>Metals</topic><topic>Optical properties</topic><topic>passivating contacts</topic><topic>Pastes</topic><topic>photonic sintering</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Screen printing</topic><topic>Silicon</topic><topic>Silver</topic><topic>Sintering</topic><topic>Solar cells</topic><topic>Temperature</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schube, Jorg</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Fellmeth, Tobias</creatorcontrib><creatorcontrib>Bivour, Martin</creatorcontrib><creatorcontrib>Feldmann, Frank</creatorcontrib><creatorcontrib>Hatt, Thibaud</creatorcontrib><creatorcontrib>Maier, Florian</creatorcontrib><creatorcontrib>Keding, Roman</creatorcontrib><creatorcontrib>Clement, Florian</creatorcontrib><creatorcontrib>Glunz, Stefan W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schube, Jorg</au><au>Tutsch, Leonard</au><au>Fellmeth, Tobias</au><au>Bivour, Martin</au><au>Feldmann, Frank</au><au>Hatt, Thibaud</au><au>Maier, Florian</au><au>Keding, Roman</au><au>Clement, Florian</au><au>Glunz, Stefan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>8</volume><issue>5</issue><spage>1208</spage><epage>1214</epage><pages>1208-1214</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The capability for contact formation on indium tin oxide layers of different low-temperature screen printing silver pastes after thermal curing and photonic sintering is evaluated in detail. The 80-nm-thick indium tin oxide layers used in this study are sputtered at three different oxygen gas flows and, consequently, differ by their electrical and optical properties. All pastes are analyzed by means of simultaneous thermogravimetry-differential scanning calorimetry. After printing and contact formation processing, the lateral resistivity of the metal contacts and their contact resistivity to the indium tin oxide layers are determined. Furthermore, the microstructure of the metal electrodes is investigated to gain a deeper understanding of the underlying contact formation mechanisms. Besides low-temperature curing at T curing, low = 180-220 °C, as conventionally applied to silicon heterojunction solar cells, photonic sintering and thermal curing at medium temperatures T curing, mid = 250-350 °C are utilized. The higher curing temperatures in the range of T curing, mid enhance the sintering and densification processes of the different pastes, and thereby, lateral resistivities of 2.4-3.5 μΩ⋅cm and contact resistivities of 1.0-2.5 mΩ⋅cm 2 are achieved. The results indicate a promising industry-relevant non-firing-through metallization approach for, e.g., poly-silicon-based structures like tunnel oxide passivating contacts, which allow comparatively high temperatures for contact formation processing. With thermal curing at T curing, low and photonic sintering, both compatible with temperature-sensitive silicon heterojunction solar cells, lateral finger resistivities of 6.5-9.4 μΩ⋅cm and contact resistivities of 1.2-2.5 mΩ⋅cm 2 are achieved. Thereby, photonic sintering has the potential of a significantly reduced process time from several minutes down to 1-4 ms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2018.2859768</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9112-3062</orcidid><orcidid>https://orcid.org/0000-0002-9443-9668</orcidid><orcidid>https://orcid.org/0000-0002-9877-2097</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2018-09, Vol.8 (5), p.1208-1214 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_proquest_journals_2117148503 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Conductivity Curing Densification Differential scanning calorimetry Electric contacts Electrical resistivity Heterojunctions Indium tin oxide Indium tin oxide (ITO) Indium tin oxides low-temperature silver pastes Metallizing Metals Optical properties passivating contacts Pastes photonic sintering Photonics Photovoltaic cells Screen printing Silicon Silver Sintering Solar cells Temperature Thermogravimetry |
title | Low-Resistivity Screen-Printed Contacts on Indium Tin Oxide Layers for Silicon Solar Cells With Passivating Contacts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Resistivity%20Screen-Printed%20Contacts%20on%20Indium%20Tin%20Oxide%20Layers%20for%20Silicon%20Solar%20Cells%20With%20Passivating%20Contacts&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Schube,%20Jorg&rft.date=2018-09-01&rft.volume=8&rft.issue=5&rft.spage=1208&rft.epage=1214&rft.pages=1208-1214&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2018.2859768&rft_dat=%3Cproquest_ieee_%3E2117148503%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-3e5cd67c6a3c6a51c4eeb91b2d88095a1656e67b279095ea20cf40ad822582093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117148503&rft_id=info:pmid/&rft_ieee_id=8425640&rfr_iscdi=true |