Loading…

A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm

In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2018-10, Vol.25 (10), p.1535-1539
Main Authors: Amaral, Luis Fernando Coelho, Lopes, Marcus Vinicius, Barros, Allan Kardec
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513
cites cdi_FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513
container_end_page 1539
container_issue 10
container_start_page 1535
container_title IEEE signal processing letters
container_volume 25
creator Amaral, Luis Fernando Coelho
Lopes, Marcus Vinicius
Barros, Allan Kardec
description In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error, motivated by the extended recursive least-squares algorithm. Simulations were performed on the problem of tracking a nonlinear Rayleigh fading multipath channel and on a system identification. The results showed that the proposed algorithm can overcome the extended kernel version ones.
doi_str_mv 10.1109/LSP.2018.2864609
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117158651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8430526</ieee_id><sourcerecordid>2117158651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt3wcuC560z2SRNjrX4BYsWq-eQZmftlrbbJrui_96tLXqad-B9ZuBh7BJhgAjmJp9OBhxQD7hWQoE5Yj2UUqc8U3jcZRhCagzoU3YW4wIANGrZY5NR8lyvt60rgmsqn4yWH3WomvkquXWRiqReJ82ckruvhtZFt7-Sb0OsPinJycUmnXZooPjPnbOT0i0jXRxmn73f372NH9P85eFpPMpTzw02aUmkigyFcIUzpeboyhkRB-U5Ke-NFAW44ax0ouAeS0AlRWaER-cNOIlZn13v725CvW0pNnZRt2HdvbQccYhSq98W7Fs-1DEGKu0mVCsXvi2C3XmznTe782YP3jrkao9URPRX1yIDyVX2A5YGaXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117158651</pqid></control><display><type>article</type><title>A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Amaral, Luis Fernando Coelho ; Lopes, Marcus Vinicius ; Barros, Allan Kardec</creator><creatorcontrib>Amaral, Luis Fernando Coelho ; Lopes, Marcus Vinicius ; Barros, Allan Kardec</creatorcontrib><description>In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error, motivated by the extended recursive least-squares algorithm. Simulations were performed on the problem of tracking a nonlinear Rayleigh fading multipath channel and on a system identification. The results showed that the proposed algorithm can overcome the extended kernel version ones.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2864609</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autoregressive processes ; Computer simulation ; Extended recursive least-squares (EX-RLS) algorithm ; Kernel ; Least squares ; Mathematical analysis ; Mathematical model ; nonquadratic function ; Nonstationary environments ; Prediction algorithms ; Rayleigh channels ; Recursive algorithms ; recursive filter adaptive ; Signal processing algorithms ; State space models ; State vectors ; Stochastic processes ; System identification ; Tracking ; tracking performance ; Vectors (mathematics)</subject><ispartof>IEEE signal processing letters, 2018-10, Vol.25 (10), p.1535-1539</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513</citedby><cites>FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513</cites><orcidid>0000-0002-4307-0960 ; 0000-0003-3195-0570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8430526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Amaral, Luis Fernando Coelho</creatorcontrib><creatorcontrib>Lopes, Marcus Vinicius</creatorcontrib><creatorcontrib>Barros, Allan Kardec</creatorcontrib><title>A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error, motivated by the extended recursive least-squares algorithm. Simulations were performed on the problem of tracking a nonlinear Rayleigh fading multipath channel and on a system identification. The results showed that the proposed algorithm can overcome the extended kernel version ones.</description><subject>Algorithms</subject><subject>Autoregressive processes</subject><subject>Computer simulation</subject><subject>Extended recursive least-squares (EX-RLS) algorithm</subject><subject>Kernel</subject><subject>Least squares</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>nonquadratic function</subject><subject>Nonstationary environments</subject><subject>Prediction algorithms</subject><subject>Rayleigh channels</subject><subject>Recursive algorithms</subject><subject>recursive filter adaptive</subject><subject>Signal processing algorithms</subject><subject>State space models</subject><subject>State vectors</subject><subject>Stochastic processes</subject><subject>System identification</subject><subject>Tracking</subject><subject>tracking performance</subject><subject>Vectors (mathematics)</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKt3wcuC560z2SRNjrX4BYsWq-eQZmftlrbbJrui_96tLXqad-B9ZuBh7BJhgAjmJp9OBhxQD7hWQoE5Yj2UUqc8U3jcZRhCagzoU3YW4wIANGrZY5NR8lyvt60rgmsqn4yWH3WomvkquXWRiqReJ82ckruvhtZFt7-Sb0OsPinJycUmnXZooPjPnbOT0i0jXRxmn73f372NH9P85eFpPMpTzw02aUmkigyFcIUzpeboyhkRB-U5Ke-NFAW44ax0ouAeS0AlRWaER-cNOIlZn13v725CvW0pNnZRt2HdvbQccYhSq98W7Fs-1DEGKu0mVCsXvi2C3XmznTe782YP3jrkao9URPRX1yIDyVX2A5YGaXE</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Amaral, Luis Fernando Coelho</creator><creator>Lopes, Marcus Vinicius</creator><creator>Barros, Allan Kardec</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4307-0960</orcidid><orcidid>https://orcid.org/0000-0003-3195-0570</orcidid></search><sort><creationdate>20181001</creationdate><title>A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm</title><author>Amaral, Luis Fernando Coelho ; Lopes, Marcus Vinicius ; Barros, Allan Kardec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Autoregressive processes</topic><topic>Computer simulation</topic><topic>Extended recursive least-squares (EX-RLS) algorithm</topic><topic>Kernel</topic><topic>Least squares</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>nonquadratic function</topic><topic>Nonstationary environments</topic><topic>Prediction algorithms</topic><topic>Rayleigh channels</topic><topic>Recursive algorithms</topic><topic>recursive filter adaptive</topic><topic>Signal processing algorithms</topic><topic>State space models</topic><topic>State vectors</topic><topic>Stochastic processes</topic><topic>System identification</topic><topic>Tracking</topic><topic>tracking performance</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amaral, Luis Fernando Coelho</creatorcontrib><creatorcontrib>Lopes, Marcus Vinicius</creatorcontrib><creatorcontrib>Barros, Allan Kardec</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaral, Luis Fernando Coelho</au><au>Lopes, Marcus Vinicius</au><au>Barros, Allan Kardec</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>25</volume><issue>10</issue><spage>1535</spage><epage>1539</epage><pages>1535-1539</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error, motivated by the extended recursive least-squares algorithm. Simulations were performed on the problem of tracking a nonlinear Rayleigh fading multipath channel and on a system identification. The results showed that the proposed algorithm can overcome the extended kernel version ones.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2018.2864609</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4307-0960</orcidid><orcidid>https://orcid.org/0000-0003-3195-0570</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2018-10, Vol.25 (10), p.1535-1539
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2117158651
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Autoregressive processes
Computer simulation
Extended recursive least-squares (EX-RLS) algorithm
Kernel
Least squares
Mathematical analysis
Mathematical model
nonquadratic function
Nonstationary environments
Prediction algorithms
Rayleigh channels
Recursive algorithms
recursive filter adaptive
Signal processing algorithms
State space models
State vectors
Stochastic processes
System identification
Tracking
tracking performance
Vectors (mathematics)
title A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonquadratic%20Algorithm%20Based%20on%20the%20Extended%20Recursive%20Least-Squares%20Algorithm&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Amaral,%20Luis%20Fernando%20Coelho&rft.date=2018-10-01&rft.volume=25&rft.issue=10&rft.spage=1535&rft.epage=1539&rft.pages=1535-1539&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2864609&rft_dat=%3Cproquest_cross%3E2117158651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117158651&rft_id=info:pmid/&rft_ieee_id=8430526&rfr_iscdi=true