Loading…
A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm
In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error,...
Saved in:
Published in: | IEEE signal processing letters 2018-10, Vol.25 (10), p.1535-1539 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513 |
container_end_page | 1539 |
container_issue | 10 |
container_start_page | 1535 |
container_title | IEEE signal processing letters |
container_volume | 25 |
creator | Amaral, Luis Fernando Coelho Lopes, Marcus Vinicius Barros, Allan Kardec |
description | In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error, motivated by the extended recursive least-squares algorithm. Simulations were performed on the problem of tracking a nonlinear Rayleigh fading multipath channel and on a system identification. The results showed that the proposed algorithm can overcome the extended kernel version ones. |
doi_str_mv | 10.1109/LSP.2018.2864609 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117158651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8430526</ieee_id><sourcerecordid>2117158651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt3wcuC560z2SRNjrX4BYsWq-eQZmftlrbbJrui_96tLXqad-B9ZuBh7BJhgAjmJp9OBhxQD7hWQoE5Yj2UUqc8U3jcZRhCagzoU3YW4wIANGrZY5NR8lyvt60rgmsqn4yWH3WomvkquXWRiqReJ82ckruvhtZFt7-Sb0OsPinJycUmnXZooPjPnbOT0i0jXRxmn73f372NH9P85eFpPMpTzw02aUmkigyFcIUzpeboyhkRB-U5Ke-NFAW44ax0ouAeS0AlRWaER-cNOIlZn13v725CvW0pNnZRt2HdvbQccYhSq98W7Fs-1DEGKu0mVCsXvi2C3XmznTe782YP3jrkao9URPRX1yIDyVX2A5YGaXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117158651</pqid></control><display><type>article</type><title>A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Amaral, Luis Fernando Coelho ; Lopes, Marcus Vinicius ; Barros, Allan Kardec</creator><creatorcontrib>Amaral, Luis Fernando Coelho ; Lopes, Marcus Vinicius ; Barros, Allan Kardec</creatorcontrib><description>In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error, motivated by the extended recursive least-squares algorithm. Simulations were performed on the problem of tracking a nonlinear Rayleigh fading multipath channel and on a system identification. The results showed that the proposed algorithm can overcome the extended kernel version ones.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2864609</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autoregressive processes ; Computer simulation ; Extended recursive least-squares (EX-RLS) algorithm ; Kernel ; Least squares ; Mathematical analysis ; Mathematical model ; nonquadratic function ; Nonstationary environments ; Prediction algorithms ; Rayleigh channels ; Recursive algorithms ; recursive filter adaptive ; Signal processing algorithms ; State space models ; State vectors ; Stochastic processes ; System identification ; Tracking ; tracking performance ; Vectors (mathematics)</subject><ispartof>IEEE signal processing letters, 2018-10, Vol.25 (10), p.1535-1539</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513</citedby><cites>FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513</cites><orcidid>0000-0002-4307-0960 ; 0000-0003-3195-0570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8430526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Amaral, Luis Fernando Coelho</creatorcontrib><creatorcontrib>Lopes, Marcus Vinicius</creatorcontrib><creatorcontrib>Barros, Allan Kardec</creatorcontrib><title>A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error, motivated by the extended recursive least-squares algorithm. Simulations were performed on the problem of tracking a nonlinear Rayleigh fading multipath channel and on a system identification. The results showed that the proposed algorithm can overcome the extended kernel version ones.</description><subject>Algorithms</subject><subject>Autoregressive processes</subject><subject>Computer simulation</subject><subject>Extended recursive least-squares (EX-RLS) algorithm</subject><subject>Kernel</subject><subject>Least squares</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>nonquadratic function</subject><subject>Nonstationary environments</subject><subject>Prediction algorithms</subject><subject>Rayleigh channels</subject><subject>Recursive algorithms</subject><subject>recursive filter adaptive</subject><subject>Signal processing algorithms</subject><subject>State space models</subject><subject>State vectors</subject><subject>Stochastic processes</subject><subject>System identification</subject><subject>Tracking</subject><subject>tracking performance</subject><subject>Vectors (mathematics)</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKt3wcuC560z2SRNjrX4BYsWq-eQZmftlrbbJrui_96tLXqad-B9ZuBh7BJhgAjmJp9OBhxQD7hWQoE5Yj2UUqc8U3jcZRhCagzoU3YW4wIANGrZY5NR8lyvt60rgmsqn4yWH3WomvkquXWRiqReJ82ckruvhtZFt7-Sb0OsPinJycUmnXZooPjPnbOT0i0jXRxmn73f372NH9P85eFpPMpTzw02aUmkigyFcIUzpeboyhkRB-U5Ke-NFAW44ax0ouAeS0AlRWaER-cNOIlZn13v725CvW0pNnZRt2HdvbQccYhSq98W7Fs-1DEGKu0mVCsXvi2C3XmznTe782YP3jrkao9URPRX1yIDyVX2A5YGaXE</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Amaral, Luis Fernando Coelho</creator><creator>Lopes, Marcus Vinicius</creator><creator>Barros, Allan Kardec</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4307-0960</orcidid><orcidid>https://orcid.org/0000-0003-3195-0570</orcidid></search><sort><creationdate>20181001</creationdate><title>A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm</title><author>Amaral, Luis Fernando Coelho ; Lopes, Marcus Vinicius ; Barros, Allan Kardec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Autoregressive processes</topic><topic>Computer simulation</topic><topic>Extended recursive least-squares (EX-RLS) algorithm</topic><topic>Kernel</topic><topic>Least squares</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>nonquadratic function</topic><topic>Nonstationary environments</topic><topic>Prediction algorithms</topic><topic>Rayleigh channels</topic><topic>Recursive algorithms</topic><topic>recursive filter adaptive</topic><topic>Signal processing algorithms</topic><topic>State space models</topic><topic>State vectors</topic><topic>Stochastic processes</topic><topic>System identification</topic><topic>Tracking</topic><topic>tracking performance</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amaral, Luis Fernando Coelho</creatorcontrib><creatorcontrib>Lopes, Marcus Vinicius</creatorcontrib><creatorcontrib>Barros, Allan Kardec</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaral, Luis Fernando Coelho</au><au>Lopes, Marcus Vinicius</au><au>Barros, Allan Kardec</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>25</volume><issue>10</issue><spage>1535</spage><epage>1539</epage><pages>1535-1539</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In adaptiveg filters, several recursive algorithms have been used to track state-space model vectors in nonstationary environments. So far, kernel recursive algorithms showed the best results in this regard. With this letter, we aim to propose an algorithm based on a nonlinear function of the error, motivated by the extended recursive least-squares algorithm. Simulations were performed on the problem of tracking a nonlinear Rayleigh fading multipath channel and on a system identification. The results showed that the proposed algorithm can overcome the extended kernel version ones.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2018.2864609</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4307-0960</orcidid><orcidid>https://orcid.org/0000-0003-3195-0570</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2018-10, Vol.25 (10), p.1535-1539 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_2117158651 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Autoregressive processes Computer simulation Extended recursive least-squares (EX-RLS) algorithm Kernel Least squares Mathematical analysis Mathematical model nonquadratic function Nonstationary environments Prediction algorithms Rayleigh channels Recursive algorithms recursive filter adaptive Signal processing algorithms State space models State vectors Stochastic processes System identification Tracking tracking performance Vectors (mathematics) |
title | A Nonquadratic Algorithm Based on the Extended Recursive Least-Squares Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonquadratic%20Algorithm%20Based%20on%20the%20Extended%20Recursive%20Least-Squares%20Algorithm&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Amaral,%20Luis%20Fernando%20Coelho&rft.date=2018-10-01&rft.volume=25&rft.issue=10&rft.spage=1535&rft.epage=1539&rft.pages=1535-1539&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2864609&rft_dat=%3Cproquest_cross%3E2117158651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-fee6d3144ada9f821afbee206c2e6cc954d0a7bfa4d2c1f01654394c1ac90a513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117158651&rft_id=info:pmid/&rft_ieee_id=8430526&rfr_iscdi=true |