Loading…

Optimized Fourier Bilateral Filtering

We consider the problem of approximating a truncated Gaussian kernel using Fourier (trigonometric) functions. The computation-intensive bilateral filter can be expressed using fast convolutions by applying such an approximation to its range kernel, where the truncation in question is the dynamic ran...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2018-10, Vol.25 (10), p.1555-1559
Main Authors: Ghosh, Sanjay, Nair, Pravin, Chaudhury, Kunal N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-13d8ddb531f11cf71b9fe1b02c9232b471ab3dfc62cb32b4f3dff54b09f520d3
cites cdi_FETCH-LOGICAL-c291t-13d8ddb531f11cf71b9fe1b02c9232b471ab3dfc62cb32b4f3dff54b09f520d3
container_end_page 1559
container_issue 10
container_start_page 1555
container_title IEEE signal processing letters
container_volume 25
creator Ghosh, Sanjay
Nair, Pravin
Chaudhury, Kunal N.
description We consider the problem of approximating a truncated Gaussian kernel using Fourier (trigonometric) functions. The computation-intensive bilateral filter can be expressed using fast convolutions by applying such an approximation to its range kernel, where the truncation in question is the dynamic range of the input image. The error from such an approximation depends on the period, the number of sinusoids, and the coefficient of each sinusoid. For a fixed period, we recently proposed a model for optimizing the coefficients using least squares fitting. Following the compressive bilateral filter (CBF), we demonstrate that the approximation can be improved by taking the period into account during the optimization. The accuracy of the resulting filtering is found to be at least as good as the CBF, but significantly better for certain cases. The proposed approximation can also be used for non-Gaussian kernels, and it comes with guarantees on the filtering accuracy.
doi_str_mv 10.1109/LSP.2018.2866949
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117164967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8445599</ieee_id><sourcerecordid>2117164967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-13d8ddb531f11cf71b9fe1b02c9232b471ab3dfc62cb32b4f3dff54b09f520d3</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMouK7eBS8F8dg6kzRtctTFqlBYwb2Hpk0kS3e7Jt2D_npTunia9-C9meEj5BYhQwT5WH9-ZBRQZFQUhczlGVkg5yKlrMDzqKGEVEoQl-QqhC0ACBR8QR7Wh9Ht3K_pkmo4emd88uz6ZjS-6ZPK9VG4_dc1ubBNH8zNaS7JpnrZrN7Sev36vnqq05ZKHFNkneg6zRlaxNaWqKU1qIG2kjKq8xIbzTrbFrTVk7fRWJ5rkJZT6NiS3M9rD374Ppowqm38aR8vKopYYpHLoowpmFOtH0LwxqqDd7vG_ygENbFQkYWaWKgTi1i5myvOGPMfF3nOuZTsD_ngWaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117164967</pqid></control><display><type>article</type><title>Optimized Fourier Bilateral Filtering</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ghosh, Sanjay ; Nair, Pravin ; Chaudhury, Kunal N.</creator><creatorcontrib>Ghosh, Sanjay ; Nair, Pravin ; Chaudhury, Kunal N.</creatorcontrib><description>We consider the problem of approximating a truncated Gaussian kernel using Fourier (trigonometric) functions. The computation-intensive bilateral filter can be expressed using fast convolutions by applying such an approximation to its range kernel, where the truncation in question is the dynamic range of the input image. The error from such an approximation depends on the period, the number of sinusoids, and the coefficient of each sinusoid. For a fixed period, we recently proposed a model for optimizing the coefficients using least squares fitting. Following the compressive bilateral filter (CBF), we demonstrate that the approximation can be improved by taking the period into account during the optimization. The accuracy of the resulting filtering is found to be at least as good as the CBF, but significantly better for certain cases. The proposed approximation can also be used for non-Gaussian kernels, and it comes with guarantees on the filtering accuracy.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2866949</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Approximation ; Approximation algorithms ; Approximation error ; Bilateral filter ; fast approximation ; Filtration ; Fourier basis ; Fourier series ; Kernel ; Matlab ; Optimization</subject><ispartof>IEEE signal processing letters, 2018-10, Vol.25 (10), p.1555-1559</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-13d8ddb531f11cf71b9fe1b02c9232b471ab3dfc62cb32b4f3dff54b09f520d3</citedby><cites>FETCH-LOGICAL-c291t-13d8ddb531f11cf71b9fe1b02c9232b471ab3dfc62cb32b4f3dff54b09f520d3</cites><orcidid>0000-0002-0474-5072 ; 0000-0002-8136-605X ; 0000-0001-6435-1051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8445599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ghosh, Sanjay</creatorcontrib><creatorcontrib>Nair, Pravin</creatorcontrib><creatorcontrib>Chaudhury, Kunal N.</creatorcontrib><title>Optimized Fourier Bilateral Filtering</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>We consider the problem of approximating a truncated Gaussian kernel using Fourier (trigonometric) functions. The computation-intensive bilateral filter can be expressed using fast convolutions by applying such an approximation to its range kernel, where the truncation in question is the dynamic range of the input image. The error from such an approximation depends on the period, the number of sinusoids, and the coefficient of each sinusoid. For a fixed period, we recently proposed a model for optimizing the coefficients using least squares fitting. Following the compressive bilateral filter (CBF), we demonstrate that the approximation can be improved by taking the period into account during the optimization. The accuracy of the resulting filtering is found to be at least as good as the CBF, but significantly better for certain cases. The proposed approximation can also be used for non-Gaussian kernels, and it comes with guarantees on the filtering accuracy.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Approximation error</subject><subject>Bilateral filter</subject><subject>fast approximation</subject><subject>Filtration</subject><subject>Fourier basis</subject><subject>Fourier series</subject><subject>Kernel</subject><subject>Matlab</subject><subject>Optimization</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhYMouK7eBS8F8dg6kzRtctTFqlBYwb2Hpk0kS3e7Jt2D_npTunia9-C9meEj5BYhQwT5WH9-ZBRQZFQUhczlGVkg5yKlrMDzqKGEVEoQl-QqhC0ACBR8QR7Wh9Ht3K_pkmo4emd88uz6ZjS-6ZPK9VG4_dc1ubBNH8zNaS7JpnrZrN7Sev36vnqq05ZKHFNkneg6zRlaxNaWqKU1qIG2kjKq8xIbzTrbFrTVk7fRWJ5rkJZT6NiS3M9rD374Ppowqm38aR8vKopYYpHLoowpmFOtH0LwxqqDd7vG_ygENbFQkYWaWKgTi1i5myvOGPMfF3nOuZTsD_ngWaI</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Ghosh, Sanjay</creator><creator>Nair, Pravin</creator><creator>Chaudhury, Kunal N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0474-5072</orcidid><orcidid>https://orcid.org/0000-0002-8136-605X</orcidid><orcidid>https://orcid.org/0000-0001-6435-1051</orcidid></search><sort><creationdate>20181001</creationdate><title>Optimized Fourier Bilateral Filtering</title><author>Ghosh, Sanjay ; Nair, Pravin ; Chaudhury, Kunal N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-13d8ddb531f11cf71b9fe1b02c9232b471ab3dfc62cb32b4f3dff54b09f520d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Approximation error</topic><topic>Bilateral filter</topic><topic>fast approximation</topic><topic>Filtration</topic><topic>Fourier basis</topic><topic>Fourier series</topic><topic>Kernel</topic><topic>Matlab</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Sanjay</creatorcontrib><creatorcontrib>Nair, Pravin</creatorcontrib><creatorcontrib>Chaudhury, Kunal N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Sanjay</au><au>Nair, Pravin</au><au>Chaudhury, Kunal N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Fourier Bilateral Filtering</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>25</volume><issue>10</issue><spage>1555</spage><epage>1559</epage><pages>1555-1559</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>We consider the problem of approximating a truncated Gaussian kernel using Fourier (trigonometric) functions. The computation-intensive bilateral filter can be expressed using fast convolutions by applying such an approximation to its range kernel, where the truncation in question is the dynamic range of the input image. The error from such an approximation depends on the period, the number of sinusoids, and the coefficient of each sinusoid. For a fixed period, we recently proposed a model for optimizing the coefficients using least squares fitting. Following the compressive bilateral filter (CBF), we demonstrate that the approximation can be improved by taking the period into account during the optimization. The accuracy of the resulting filtering is found to be at least as good as the CBF, but significantly better for certain cases. The proposed approximation can also be used for non-Gaussian kernels, and it comes with guarantees on the filtering accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2018.2866949</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0474-5072</orcidid><orcidid>https://orcid.org/0000-0002-8136-605X</orcidid><orcidid>https://orcid.org/0000-0001-6435-1051</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2018-10, Vol.25 (10), p.1555-1559
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2117164967
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Approximation
Approximation algorithms
Approximation error
Bilateral filter
fast approximation
Filtration
Fourier basis
Fourier series
Kernel
Matlab
Optimization
title Optimized Fourier Bilateral Filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Fourier%20Bilateral%20Filtering&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Ghosh,%20Sanjay&rft.date=2018-10-01&rft.volume=25&rft.issue=10&rft.spage=1555&rft.epage=1559&rft.pages=1555-1559&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2866949&rft_dat=%3Cproquest_cross%3E2117164967%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-13d8ddb531f11cf71b9fe1b02c9232b471ab3dfc62cb32b4f3dff54b09f520d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117164967&rft_id=info:pmid/&rft_ieee_id=8445599&rfr_iscdi=true