Loading…

Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem

The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating the reactive power, such as shunt elements and tap changers, are considered. The ORPD problem is modelled as a mixed-integer nonlinear optimiz...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-05
Main Authors: Bingane, Christian, Anjos, Miguel F, Sébastien Le Digabel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bingane, Christian
Anjos, Miguel F
Sébastien Le Digabel
description The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating the reactive power, such as shunt elements and tap changers, are considered. The ORPD problem is modelled as a mixed-integer nonlinear optimization problem and its complexity is increased compared to the ACOPF problem, which is highly nonconvex and generally hard to solve. Recently, convex relaxations of the ACOPF problem have attracted a significant interest since they can lead to global optimality. We propose a tight conic relaxation of the ORPD problem and show that a round-off technique applied with this relaxation leads to near-global optimal solutions with very small guaranteed optimality gaps, unlike with the nonconvex continuous relaxation. We report computational results on selected MATPOWER test cases with up to 3375 buses.
doi_str_mv 10.48550/arxiv.1810.03040
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2117280141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117280141</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-f55331d6add25fa272d4286eed808979a5cd05f7675b49bb82654fb774e4a23d3</originalsourceid><addsrcrecordid>eNotzc1qAyEUBWApFBrSPEB3QtemetXRLEvoHwTSxezDHXU6hsk4dUyax-9AuzpwDpyPkAfB18pqzZ8wX-NlLexccMkVvyELkFIwqwDuyGqajpxzqAxoLRfks45fXWE4eOa6gCN1aYiO5tDjFUtMA21TpqULNI0lnrCfJ3QlXgId00_I1MdpxOI6OubU9OF0T25b7Kew-s8lqV9f6u072-3fPrbPO4YaBGtnXApfofegWwQDXoGtQvCW243ZoHae69ZURjdq0zQWKq3axhgVFIL0ckke_25n9vscpnI4pnMeZvEAQhiwXCghfwEoylCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117280141</pqid></control><display><type>article</type><title>Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem</title><source>Access via ProQuest (Open Access)</source><creator>Bingane, Christian ; Anjos, Miguel F ; Sébastien Le Digabel</creator><creatorcontrib>Bingane, Christian ; Anjos, Miguel F ; Sébastien Le Digabel</creatorcontrib><description>The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating the reactive power, such as shunt elements and tap changers, are considered. The ORPD problem is modelled as a mixed-integer nonlinear optimization problem and its complexity is increased compared to the ACOPF problem, which is highly nonconvex and generally hard to solve. Recently, convex relaxations of the ACOPF problem have attracted a significant interest since they can lead to global optimality. We propose a tight conic relaxation of the ORPD problem and show that a round-off technique applied with this relaxation leads to near-global optimal solutions with very small guaranteed optimality gaps, unlike with the nonconvex continuous relaxation. We report computational results on selected MATPOWER test cases with up to 3375 buses.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1810.03040</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nonlinear programming ; Optimization ; Power dispatch ; Power flow ; Reactive power ; Tap changers</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2117280141?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Bingane, Christian</creatorcontrib><creatorcontrib>Anjos, Miguel F</creatorcontrib><creatorcontrib>Sébastien Le Digabel</creatorcontrib><title>Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem</title><title>arXiv.org</title><description>The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating the reactive power, such as shunt elements and tap changers, are considered. The ORPD problem is modelled as a mixed-integer nonlinear optimization problem and its complexity is increased compared to the ACOPF problem, which is highly nonconvex and generally hard to solve. Recently, convex relaxations of the ACOPF problem have attracted a significant interest since they can lead to global optimality. We propose a tight conic relaxation of the ORPD problem and show that a round-off technique applied with this relaxation leads to near-global optimal solutions with very small guaranteed optimality gaps, unlike with the nonconvex continuous relaxation. We report computational results on selected MATPOWER test cases with up to 3375 buses.</description><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Power dispatch</subject><subject>Power flow</subject><subject>Reactive power</subject><subject>Tap changers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzc1qAyEUBWApFBrSPEB3QtemetXRLEvoHwTSxezDHXU6hsk4dUyax-9AuzpwDpyPkAfB18pqzZ8wX-NlLexccMkVvyELkFIwqwDuyGqajpxzqAxoLRfks45fXWE4eOa6gCN1aYiO5tDjFUtMA21TpqULNI0lnrCfJ3QlXgId00_I1MdpxOI6OubU9OF0T25b7Kew-s8lqV9f6u072-3fPrbPO4YaBGtnXApfofegWwQDXoGtQvCW243ZoHae69ZURjdq0zQWKq3axhgVFIL0ckke_25n9vscpnI4pnMeZvEAQhiwXCghfwEoylCg</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>Bingane, Christian</creator><creator>Anjos, Miguel F</creator><creator>Sébastien Le Digabel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190514</creationdate><title>Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem</title><author>Bingane, Christian ; Anjos, Miguel F ; Sébastien Le Digabel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-f55331d6add25fa272d4286eed808979a5cd05f7675b49bb82654fb774e4a23d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Power dispatch</topic><topic>Power flow</topic><topic>Reactive power</topic><topic>Tap changers</topic><toplevel>online_resources</toplevel><creatorcontrib>Bingane, Christian</creatorcontrib><creatorcontrib>Anjos, Miguel F</creatorcontrib><creatorcontrib>Sébastien Le Digabel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bingane, Christian</au><au>Anjos, Miguel F</au><au>Sébastien Le Digabel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem</atitle><jtitle>arXiv.org</jtitle><date>2019-05-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating the reactive power, such as shunt elements and tap changers, are considered. The ORPD problem is modelled as a mixed-integer nonlinear optimization problem and its complexity is increased compared to the ACOPF problem, which is highly nonconvex and generally hard to solve. Recently, convex relaxations of the ACOPF problem have attracted a significant interest since they can lead to global optimality. We propose a tight conic relaxation of the ORPD problem and show that a round-off technique applied with this relaxation leads to near-global optimal solutions with very small guaranteed optimality gaps, unlike with the nonconvex continuous relaxation. We report computational results on selected MATPOWER test cases with up to 3375 buses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1810.03040</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2117280141
source Access via ProQuest (Open Access)
subjects Nonlinear programming
Optimization
Power dispatch
Power flow
Reactive power
Tap changers
title Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight-and-cheap%20conic%20relaxation%20for%20the%20optimal%20reactive%20power%20dispatch%20problem&rft.jtitle=arXiv.org&rft.au=Bingane,%20Christian&rft.date=2019-05-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1810.03040&rft_dat=%3Cproquest%3E2117280141%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-f55331d6add25fa272d4286eed808979a5cd05f7675b49bb82654fb774e4a23d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117280141&rft_id=info:pmid/&rfr_iscdi=true