Loading…
Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method
In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2018-11, Vol.341, p.163-187 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3 |
container_end_page | 187 |
container_issue | |
container_start_page | 163 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 341 |
creator | Russell, M.A. Souto-Iglesias, A. Zohdi, T.I. |
description | In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-surface melting, flow, and re-solidification of metallic materials with complex physics and material geometries. A novel SPH formulation for modeling isothermally-incompressible fluids, which allows for the accurate simulation of thermally-driven, liquid-phase metal expansion/contraction, is presented and verified. Fundamental validation of the methodology is performed via comparison with spot laser welding experiments. The methodology is then used to investigate the specific Additive Manufacturing process of the Selective Laser Melting of Metallic, micro-scale particle beds. The physics of a track deposition process is explored through numerical experiments, and the influence of processing parameters on the quality of the finished melt-track is investigated. The unique abilities of using a Lagrangian mesh-free method, as opposed to mesh-based numerical schemes, to model this process are highlighted. The SPH method is found to be a viable and promising numerical tool for simulating laser fusion driven Additive Manufacturing processes. |
doi_str_mv | 10.1016/j.cma.2018.06.033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117573469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251830330X</els_id><sourcerecordid>2117573469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA86752s0unkqxVqgfoF68hGwysSnd3ZrsFvz3ptSzcxmGed-Zlweha0pySmh5u8lNq3NGaJWTMiecn6AJrWSdMcqrUzQhRBSZrFhxji5i3JBUFWUT9Pk8thC80VscfTtu9eD7DvcOr3SEgBdjPMwza_3g94CfdDc6bYYx-O4L70JvIEaIOMnSPKwBv70ucQvDureX6MzpbYSrvz5FH4v79_kyW708PM5nq8wILoZMWu2gYELYipCmMkAYKbnkjWBONoYLKrjWaavrigneOGmlcTWjxIJk1vEpujneTXG-R4iD2vRj6NJLxSiVheSirJOKHlUm9DEGcGoXfKvDj6JEHRCqjUoI1QGhIqVKCJPn7uiBFH_vIahoPHQGrA9gBmV7_4_7F7JAeZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117573469</pqid></control><display><type>article</type><title>Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method</title><source>ScienceDirect Journals</source><creator>Russell, M.A. ; Souto-Iglesias, A. ; Zohdi, T.I.</creator><creatorcontrib>Russell, M.A. ; Souto-Iglesias, A. ; Zohdi, T.I.</creatorcontrib><description>In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-surface melting, flow, and re-solidification of metallic materials with complex physics and material geometries. A novel SPH formulation for modeling isothermally-incompressible fluids, which allows for the accurate simulation of thermally-driven, liquid-phase metal expansion/contraction, is presented and verified. Fundamental validation of the methodology is performed via comparison with spot laser welding experiments. The methodology is then used to investigate the specific Additive Manufacturing process of the Selective Laser Melting of Metallic, micro-scale particle beds. The physics of a track deposition process is explored through numerical experiments, and the influence of processing parameters on the quality of the finished melt-track is investigated. The unique abilities of using a Lagrangian mesh-free method, as opposed to mesh-based numerical schemes, to model this process are highlighted. The SPH method is found to be a viable and promising numerical tool for simulating laser fusion driven Additive Manufacturing processes.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2018.06.033</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Additive Manufacturing ; Chemical reactions ; Computational fluid dynamics ; Computer simulation ; Computer simulations ; Deformation ; Finite element method ; Fluid flow ; Heat flow ; Incompressible flow ; Incompressible fluids ; Laser beam melting ; Laser beam welding ; Laser fusion ; Laser powder bed fusion ; Liquid phases ; Mathematical models ; Meshless methods ; Process parameters ; Selective Laser Melting ; Smooth particle hydrodynamics ; Solidification ; SPH ; Studies ; Temperature ; Theory ; Thermodynamics</subject><ispartof>Computer methods in applied mechanics and engineering, 2018-11, Vol.341, p.163-187</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3</citedby><cites>FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3</cites><orcidid>0000-0002-1508-9787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Russell, M.A.</creatorcontrib><creatorcontrib>Souto-Iglesias, A.</creatorcontrib><creatorcontrib>Zohdi, T.I.</creatorcontrib><title>Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method</title><title>Computer methods in applied mechanics and engineering</title><description>In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-surface melting, flow, and re-solidification of metallic materials with complex physics and material geometries. A novel SPH formulation for modeling isothermally-incompressible fluids, which allows for the accurate simulation of thermally-driven, liquid-phase metal expansion/contraction, is presented and verified. Fundamental validation of the methodology is performed via comparison with spot laser welding experiments. The methodology is then used to investigate the specific Additive Manufacturing process of the Selective Laser Melting of Metallic, micro-scale particle beds. The physics of a track deposition process is explored through numerical experiments, and the influence of processing parameters on the quality of the finished melt-track is investigated. The unique abilities of using a Lagrangian mesh-free method, as opposed to mesh-based numerical schemes, to model this process are highlighted. The SPH method is found to be a viable and promising numerical tool for simulating laser fusion driven Additive Manufacturing processes.</description><subject>Additive Manufacturing</subject><subject>Chemical reactions</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Computer simulations</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Heat flow</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Laser beam melting</subject><subject>Laser beam welding</subject><subject>Laser fusion</subject><subject>Laser powder bed fusion</subject><subject>Liquid phases</subject><subject>Mathematical models</subject><subject>Meshless methods</subject><subject>Process parameters</subject><subject>Selective Laser Melting</subject><subject>Smooth particle hydrodynamics</subject><subject>Solidification</subject><subject>SPH</subject><subject>Studies</subject><subject>Temperature</subject><subject>Theory</subject><subject>Thermodynamics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA86752s0unkqxVqgfoF68hGwysSnd3ZrsFvz3ptSzcxmGed-Zlweha0pySmh5u8lNq3NGaJWTMiecn6AJrWSdMcqrUzQhRBSZrFhxji5i3JBUFWUT9Pk8thC80VscfTtu9eD7DvcOr3SEgBdjPMwza_3g94CfdDc6bYYx-O4L70JvIEaIOMnSPKwBv70ucQvDureX6MzpbYSrvz5FH4v79_kyW708PM5nq8wILoZMWu2gYELYipCmMkAYKbnkjWBONoYLKrjWaavrigneOGmlcTWjxIJk1vEpujneTXG-R4iD2vRj6NJLxSiVheSirJOKHlUm9DEGcGoXfKvDj6JEHRCqjUoI1QGhIqVKCJPn7uiBFH_vIahoPHQGrA9gBmV7_4_7F7JAeZ0</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Russell, M.A.</creator><creator>Souto-Iglesias, A.</creator><creator>Zohdi, T.I.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1508-9787</orcidid></search><sort><creationdate>20181101</creationdate><title>Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method</title><author>Russell, M.A. ; Souto-Iglesias, A. ; Zohdi, T.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additive Manufacturing</topic><topic>Chemical reactions</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Computer simulations</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Heat flow</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Laser beam melting</topic><topic>Laser beam welding</topic><topic>Laser fusion</topic><topic>Laser powder bed fusion</topic><topic>Liquid phases</topic><topic>Mathematical models</topic><topic>Meshless methods</topic><topic>Process parameters</topic><topic>Selective Laser Melting</topic><topic>Smooth particle hydrodynamics</topic><topic>Solidification</topic><topic>SPH</topic><topic>Studies</topic><topic>Temperature</topic><topic>Theory</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, M.A.</creatorcontrib><creatorcontrib>Souto-Iglesias, A.</creatorcontrib><creatorcontrib>Zohdi, T.I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, M.A.</au><au>Souto-Iglesias, A.</au><au>Zohdi, T.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>341</volume><spage>163</spage><epage>187</epage><pages>163-187</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-surface melting, flow, and re-solidification of metallic materials with complex physics and material geometries. A novel SPH formulation for modeling isothermally-incompressible fluids, which allows for the accurate simulation of thermally-driven, liquid-phase metal expansion/contraction, is presented and verified. Fundamental validation of the methodology is performed via comparison with spot laser welding experiments. The methodology is then used to investigate the specific Additive Manufacturing process of the Selective Laser Melting of Metallic, micro-scale particle beds. The physics of a track deposition process is explored through numerical experiments, and the influence of processing parameters on the quality of the finished melt-track is investigated. The unique abilities of using a Lagrangian mesh-free method, as opposed to mesh-based numerical schemes, to model this process are highlighted. The SPH method is found to be a viable and promising numerical tool for simulating laser fusion driven Additive Manufacturing processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2018.06.033</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1508-9787</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2018-11, Vol.341, p.163-187 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2117573469 |
source | ScienceDirect Journals |
subjects | Additive Manufacturing Chemical reactions Computational fluid dynamics Computer simulation Computer simulations Deformation Finite element method Fluid flow Heat flow Incompressible flow Incompressible fluids Laser beam melting Laser beam welding Laser fusion Laser powder bed fusion Liquid phases Mathematical models Meshless methods Process parameters Selective Laser Melting Smooth particle hydrodynamics Solidification SPH Studies Temperature Theory Thermodynamics |
title | Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20Laser%20Fusion%20Additive%20Manufacturing%20processes%20using%20the%20SPH%20method&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Russell,%20M.A.&rft.date=2018-11-01&rft.volume=341&rft.spage=163&rft.epage=187&rft.pages=163-187&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2018.06.033&rft_dat=%3Cproquest_cross%3E2117573469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117573469&rft_id=info:pmid/&rfr_iscdi=true |