Loading…

Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method

In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2018-11, Vol.341, p.163-187
Main Authors: Russell, M.A., Souto-Iglesias, A., Zohdi, T.I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3
cites cdi_FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3
container_end_page 187
container_issue
container_start_page 163
container_title Computer methods in applied mechanics and engineering
container_volume 341
creator Russell, M.A.
Souto-Iglesias, A.
Zohdi, T.I.
description In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-surface melting, flow, and re-solidification of metallic materials with complex physics and material geometries. A novel SPH formulation for modeling isothermally-incompressible fluids, which allows for the accurate simulation of thermally-driven, liquid-phase metal expansion/contraction, is presented and verified. Fundamental validation of the methodology is performed via comparison with spot laser welding experiments. The methodology is then used to investigate the specific Additive Manufacturing process of the Selective Laser Melting of Metallic, micro-scale particle beds. The physics of a track deposition process is explored through numerical experiments, and the influence of processing parameters on the quality of the finished melt-track is investigated. The unique abilities of using a Lagrangian mesh-free method, as opposed to mesh-based numerical schemes, to model this process are highlighted. The SPH method is found to be a viable and promising numerical tool for simulating laser fusion driven Additive Manufacturing processes.
doi_str_mv 10.1016/j.cma.2018.06.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117573469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251830330X</els_id><sourcerecordid>2117573469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA86752s0unkqxVqgfoF68hGwysSnd3ZrsFvz3ptSzcxmGed-Zlweha0pySmh5u8lNq3NGaJWTMiecn6AJrWSdMcqrUzQhRBSZrFhxji5i3JBUFWUT9Pk8thC80VscfTtu9eD7DvcOr3SEgBdjPMwza_3g94CfdDc6bYYx-O4L70JvIEaIOMnSPKwBv70ucQvDureX6MzpbYSrvz5FH4v79_kyW708PM5nq8wILoZMWu2gYELYipCmMkAYKbnkjWBONoYLKrjWaavrigneOGmlcTWjxIJk1vEpujneTXG-R4iD2vRj6NJLxSiVheSirJOKHlUm9DEGcGoXfKvDj6JEHRCqjUoI1QGhIqVKCJPn7uiBFH_vIahoPHQGrA9gBmV7_4_7F7JAeZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117573469</pqid></control><display><type>article</type><title>Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method</title><source>ScienceDirect Journals</source><creator>Russell, M.A. ; Souto-Iglesias, A. ; Zohdi, T.I.</creator><creatorcontrib>Russell, M.A. ; Souto-Iglesias, A. ; Zohdi, T.I.</creatorcontrib><description>In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-surface melting, flow, and re-solidification of metallic materials with complex physics and material geometries. A novel SPH formulation for modeling isothermally-incompressible fluids, which allows for the accurate simulation of thermally-driven, liquid-phase metal expansion/contraction, is presented and verified. Fundamental validation of the methodology is performed via comparison with spot laser welding experiments. The methodology is then used to investigate the specific Additive Manufacturing process of the Selective Laser Melting of Metallic, micro-scale particle beds. The physics of a track deposition process is explored through numerical experiments, and the influence of processing parameters on the quality of the finished melt-track is investigated. The unique abilities of using a Lagrangian mesh-free method, as opposed to mesh-based numerical schemes, to model this process are highlighted. The SPH method is found to be a viable and promising numerical tool for simulating laser fusion driven Additive Manufacturing processes.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2018.06.033</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Additive Manufacturing ; Chemical reactions ; Computational fluid dynamics ; Computer simulation ; Computer simulations ; Deformation ; Finite element method ; Fluid flow ; Heat flow ; Incompressible flow ; Incompressible fluids ; Laser beam melting ; Laser beam welding ; Laser fusion ; Laser powder bed fusion ; Liquid phases ; Mathematical models ; Meshless methods ; Process parameters ; Selective Laser Melting ; Smooth particle hydrodynamics ; Solidification ; SPH ; Studies ; Temperature ; Theory ; Thermodynamics</subject><ispartof>Computer methods in applied mechanics and engineering, 2018-11, Vol.341, p.163-187</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3</citedby><cites>FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3</cites><orcidid>0000-0002-1508-9787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Russell, M.A.</creatorcontrib><creatorcontrib>Souto-Iglesias, A.</creatorcontrib><creatorcontrib>Zohdi, T.I.</creatorcontrib><title>Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method</title><title>Computer methods in applied mechanics and engineering</title><description>In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-surface melting, flow, and re-solidification of metallic materials with complex physics and material geometries. A novel SPH formulation for modeling isothermally-incompressible fluids, which allows for the accurate simulation of thermally-driven, liquid-phase metal expansion/contraction, is presented and verified. Fundamental validation of the methodology is performed via comparison with spot laser welding experiments. The methodology is then used to investigate the specific Additive Manufacturing process of the Selective Laser Melting of Metallic, micro-scale particle beds. The physics of a track deposition process is explored through numerical experiments, and the influence of processing parameters on the quality of the finished melt-track is investigated. The unique abilities of using a Lagrangian mesh-free method, as opposed to mesh-based numerical schemes, to model this process are highlighted. The SPH method is found to be a viable and promising numerical tool for simulating laser fusion driven Additive Manufacturing processes.</description><subject>Additive Manufacturing</subject><subject>Chemical reactions</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Computer simulations</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Heat flow</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Laser beam melting</subject><subject>Laser beam welding</subject><subject>Laser fusion</subject><subject>Laser powder bed fusion</subject><subject>Liquid phases</subject><subject>Mathematical models</subject><subject>Meshless methods</subject><subject>Process parameters</subject><subject>Selective Laser Melting</subject><subject>Smooth particle hydrodynamics</subject><subject>Solidification</subject><subject>SPH</subject><subject>Studies</subject><subject>Temperature</subject><subject>Theory</subject><subject>Thermodynamics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA86752s0unkqxVqgfoF68hGwysSnd3ZrsFvz3ptSzcxmGed-Zlweha0pySmh5u8lNq3NGaJWTMiecn6AJrWSdMcqrUzQhRBSZrFhxji5i3JBUFWUT9Pk8thC80VscfTtu9eD7DvcOr3SEgBdjPMwza_3g94CfdDc6bYYx-O4L70JvIEaIOMnSPKwBv70ucQvDureX6MzpbYSrvz5FH4v79_kyW708PM5nq8wILoZMWu2gYELYipCmMkAYKbnkjWBONoYLKrjWaavrigneOGmlcTWjxIJk1vEpujneTXG-R4iD2vRj6NJLxSiVheSirJOKHlUm9DEGcGoXfKvDj6JEHRCqjUoI1QGhIqVKCJPn7uiBFH_vIahoPHQGrA9gBmV7_4_7F7JAeZ0</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Russell, M.A.</creator><creator>Souto-Iglesias, A.</creator><creator>Zohdi, T.I.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1508-9787</orcidid></search><sort><creationdate>20181101</creationdate><title>Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method</title><author>Russell, M.A. ; Souto-Iglesias, A. ; Zohdi, T.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additive Manufacturing</topic><topic>Chemical reactions</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Computer simulations</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Heat flow</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Laser beam melting</topic><topic>Laser beam welding</topic><topic>Laser fusion</topic><topic>Laser powder bed fusion</topic><topic>Liquid phases</topic><topic>Mathematical models</topic><topic>Meshless methods</topic><topic>Process parameters</topic><topic>Selective Laser Melting</topic><topic>Smooth particle hydrodynamics</topic><topic>Solidification</topic><topic>SPH</topic><topic>Studies</topic><topic>Temperature</topic><topic>Theory</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, M.A.</creatorcontrib><creatorcontrib>Souto-Iglesias, A.</creatorcontrib><creatorcontrib>Zohdi, T.I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, M.A.</au><au>Souto-Iglesias, A.</au><au>Zohdi, T.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>341</volume><spage>163</spage><epage>187</epage><pages>163-187</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this work, the Smooth Particle Hydrodynamics (SPH) method, a Lagrangian mesh-free numerical scheme, is adapted for the first time to resolve thermal–mechanical–material fields in a range of Laser Fusion Additive Manufacturing processes. The method is capable of simulating large-deformation, free-surface melting, flow, and re-solidification of metallic materials with complex physics and material geometries. A novel SPH formulation for modeling isothermally-incompressible fluids, which allows for the accurate simulation of thermally-driven, liquid-phase metal expansion/contraction, is presented and verified. Fundamental validation of the methodology is performed via comparison with spot laser welding experiments. The methodology is then used to investigate the specific Additive Manufacturing process of the Selective Laser Melting of Metallic, micro-scale particle beds. The physics of a track deposition process is explored through numerical experiments, and the influence of processing parameters on the quality of the finished melt-track is investigated. The unique abilities of using a Lagrangian mesh-free method, as opposed to mesh-based numerical schemes, to model this process are highlighted. The SPH method is found to be a viable and promising numerical tool for simulating laser fusion driven Additive Manufacturing processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2018.06.033</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1508-9787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2018-11, Vol.341, p.163-187
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2117573469
source ScienceDirect Journals
subjects Additive Manufacturing
Chemical reactions
Computational fluid dynamics
Computer simulation
Computer simulations
Deformation
Finite element method
Fluid flow
Heat flow
Incompressible flow
Incompressible fluids
Laser beam melting
Laser beam welding
Laser fusion
Laser powder bed fusion
Liquid phases
Mathematical models
Meshless methods
Process parameters
Selective Laser Melting
Smooth particle hydrodynamics
Solidification
SPH
Studies
Temperature
Theory
Thermodynamics
title Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20Laser%20Fusion%20Additive%20Manufacturing%20processes%20using%20the%20SPH%20method&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Russell,%20M.A.&rft.date=2018-11-01&rft.volume=341&rft.spage=163&rft.epage=187&rft.pages=163-187&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2018.06.033&rft_dat=%3Cproquest_cross%3E2117573469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-7dafe5244d800b8ce0206373b42f7bc34143aa4d8a98243bf7d7cf9210de72df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117573469&rft_id=info:pmid/&rfr_iscdi=true