Loading…

An overview of oxidation-resistant tungsten alloys for nuclear fusion

Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2018-10, Vol.765, p.299-312
Main Authors: Liu, Dong–Guang, Zheng, Liang, Luo, Lai–Ma, Zan, Xiang, Song, Jiu-Peng, Xu, Qiu, Zhu, Xiao–Yong, Wu, Yu–Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3
cites cdi_FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3
container_end_page 312
container_issue
container_start_page 299
container_title Journal of alloys and compounds
container_volume 765
creator Liu, Dong–Guang
Zheng, Liang
Luo, Lai–Ma
Zan, Xiang
Song, Jiu-Peng
Xu, Qiu
Zhu, Xiao–Yong
Wu, Yu–Cheng
description Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloys facing the plasma may reach 1200 °C. At this temperature, tungsten are directly oxidized and volatilized, thus causing plasma pollution. The oxidation-resistant tungsten alloys in this study is expected to solve this problem. In this work, the improvements and mechanisms of different alloying elements with regard to the oxidation resistance of tungsten alloys, combined with the results in recent studies, were reviewed, and possible development trends were discussed. •Adding Si or Cr in W can preferentially form a protective oxide film.•Adding Ti played a positive role in improving the oxidation resistance of the alloy.•W-Cr-Y alloy has more excellent oxidation resistance than W-Cr-Ti ternary alloy.•W-Cr-Y alloy after annealing has better oxidation resistance.
doi_str_mv 10.1016/j.jallcom.2018.06.202
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117574888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838818323235</els_id><sourcerecordid>2117574888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3</originalsourceid><addsrcrecordid>eNqFkE1LwzAcxoMoOKcfQQh4bk3SNk1OMsZ8gYEXPYc0_UdStmYm6XTf3ozt7um5PC88P4TuKSkpofxxKAe92Ri_LRmhoiQ8K7tAMyraqqg5l5doRiRrClEJcY1uYhwIIVRWdIZWixH7PYS9gx_sLfa_rtfJ-bEIEF1Mekw4TeNXTDDivOIPEVsf8DiZDeiA7RSz-RZdWb2JcHfWOfp8Xn0sX4v1-8vbcrEuTFW1qQAiZW1q1jTMSMstJRqM7LqWGgMWhNSG1LLuKRem5bzvgNak45qRxnRVb6o5ejj17oL_niAmNfgpjHlSMUrbpq2FENnVnFwm-BgDWLULbqvDQVGijsTUoM7E1JGYIjwry7mnUw7yhQwkqGgcjAZ6F8Ak1Xv3T8MfIKt4TA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117574888</pqid></control><display><type>article</type><title>An overview of oxidation-resistant tungsten alloys for nuclear fusion</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Dong–Guang ; Zheng, Liang ; Luo, Lai–Ma ; Zan, Xiang ; Song, Jiu-Peng ; Xu, Qiu ; Zhu, Xiao–Yong ; Wu, Yu–Cheng</creator><creatorcontrib>Liu, Dong–Guang ; Zheng, Liang ; Luo, Lai–Ma ; Zan, Xiang ; Song, Jiu-Peng ; Xu, Qiu ; Zhu, Xiao–Yong ; Wu, Yu–Cheng</creatorcontrib><description>Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloys facing the plasma may reach 1200 °C. At this temperature, tungsten are directly oxidized and volatilized, thus causing plasma pollution. The oxidation-resistant tungsten alloys in this study is expected to solve this problem. In this work, the improvements and mechanisms of different alloying elements with regard to the oxidation resistance of tungsten alloys, combined with the results in recent studies, were reviewed, and possible development trends were discussed. •Adding Si or Cr in W can preferentially form a protective oxide film.•Adding Ti played a positive role in improving the oxidation resistance of the alloy.•W-Cr-Y alloy has more excellent oxidation resistance than W-Cr-Ti ternary alloy.•W-Cr-Y alloy after annealing has better oxidation resistance.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.06.202</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloying elements ; Alloys ; Chemical reactions ; Fusion reactors ; Nuclear engineering ; Nuclear fusion ; Nuclear fusion reactor ; Nuclear reactors ; Nuclear safety ; Oxidation ; Oxidation resistance ; Oxidation-resistant tungsten alloys ; Plasma-facing material ; Tungsten base alloys ; Vacuum chambers ; Water pollution ; Water vapor</subject><ispartof>Journal of alloys and compounds, 2018-10, Vol.765, p.299-312</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3</citedby><cites>FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3</cites><orcidid>0000-0003-4568-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Dong–Guang</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Luo, Lai–Ma</creatorcontrib><creatorcontrib>Zan, Xiang</creatorcontrib><creatorcontrib>Song, Jiu-Peng</creatorcontrib><creatorcontrib>Xu, Qiu</creatorcontrib><creatorcontrib>Zhu, Xiao–Yong</creatorcontrib><creatorcontrib>Wu, Yu–Cheng</creatorcontrib><title>An overview of oxidation-resistant tungsten alloys for nuclear fusion</title><title>Journal of alloys and compounds</title><description>Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloys facing the plasma may reach 1200 °C. At this temperature, tungsten are directly oxidized and volatilized, thus causing plasma pollution. The oxidation-resistant tungsten alloys in this study is expected to solve this problem. In this work, the improvements and mechanisms of different alloying elements with regard to the oxidation resistance of tungsten alloys, combined with the results in recent studies, were reviewed, and possible development trends were discussed. •Adding Si or Cr in W can preferentially form a protective oxide film.•Adding Ti played a positive role in improving the oxidation resistance of the alloy.•W-Cr-Y alloy has more excellent oxidation resistance than W-Cr-Ti ternary alloy.•W-Cr-Y alloy after annealing has better oxidation resistance.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Chemical reactions</subject><subject>Fusion reactors</subject><subject>Nuclear engineering</subject><subject>Nuclear fusion</subject><subject>Nuclear fusion reactor</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxidation-resistant tungsten alloys</subject><subject>Plasma-facing material</subject><subject>Tungsten base alloys</subject><subject>Vacuum chambers</subject><subject>Water pollution</subject><subject>Water vapor</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LwzAcxoMoOKcfQQh4bk3SNk1OMsZ8gYEXPYc0_UdStmYm6XTf3ozt7um5PC88P4TuKSkpofxxKAe92Ri_LRmhoiQ8K7tAMyraqqg5l5doRiRrClEJcY1uYhwIIVRWdIZWixH7PYS9gx_sLfa_rtfJ-bEIEF1Mekw4TeNXTDDivOIPEVsf8DiZDeiA7RSz-RZdWb2JcHfWOfp8Xn0sX4v1-8vbcrEuTFW1qQAiZW1q1jTMSMstJRqM7LqWGgMWhNSG1LLuKRem5bzvgNak45qRxnRVb6o5ejj17oL_niAmNfgpjHlSMUrbpq2FENnVnFwm-BgDWLULbqvDQVGijsTUoM7E1JGYIjwry7mnUw7yhQwkqGgcjAZ6F8Ak1Xv3T8MfIKt4TA</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Liu, Dong–Guang</creator><creator>Zheng, Liang</creator><creator>Luo, Lai–Ma</creator><creator>Zan, Xiang</creator><creator>Song, Jiu-Peng</creator><creator>Xu, Qiu</creator><creator>Zhu, Xiao–Yong</creator><creator>Wu, Yu–Cheng</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4568-0727</orcidid></search><sort><creationdate>20181015</creationdate><title>An overview of oxidation-resistant tungsten alloys for nuclear fusion</title><author>Liu, Dong–Guang ; Zheng, Liang ; Luo, Lai–Ma ; Zan, Xiang ; Song, Jiu-Peng ; Xu, Qiu ; Zhu, Xiao–Yong ; Wu, Yu–Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Chemical reactions</topic><topic>Fusion reactors</topic><topic>Nuclear engineering</topic><topic>Nuclear fusion</topic><topic>Nuclear fusion reactor</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxidation-resistant tungsten alloys</topic><topic>Plasma-facing material</topic><topic>Tungsten base alloys</topic><topic>Vacuum chambers</topic><topic>Water pollution</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dong–Guang</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Luo, Lai–Ma</creatorcontrib><creatorcontrib>Zan, Xiang</creatorcontrib><creatorcontrib>Song, Jiu-Peng</creatorcontrib><creatorcontrib>Xu, Qiu</creatorcontrib><creatorcontrib>Zhu, Xiao–Yong</creatorcontrib><creatorcontrib>Wu, Yu–Cheng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dong–Guang</au><au>Zheng, Liang</au><au>Luo, Lai–Ma</au><au>Zan, Xiang</au><au>Song, Jiu-Peng</au><au>Xu, Qiu</au><au>Zhu, Xiao–Yong</au><au>Wu, Yu–Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview of oxidation-resistant tungsten alloys for nuclear fusion</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>765</volume><spage>299</spage><epage>312</epage><pages>299-312</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloys facing the plasma may reach 1200 °C. At this temperature, tungsten are directly oxidized and volatilized, thus causing plasma pollution. The oxidation-resistant tungsten alloys in this study is expected to solve this problem. In this work, the improvements and mechanisms of different alloying elements with regard to the oxidation resistance of tungsten alloys, combined with the results in recent studies, were reviewed, and possible development trends were discussed. •Adding Si or Cr in W can preferentially form a protective oxide film.•Adding Ti played a positive role in improving the oxidation resistance of the alloy.•W-Cr-Y alloy has more excellent oxidation resistance than W-Cr-Ti ternary alloy.•W-Cr-Y alloy after annealing has better oxidation resistance.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2018.06.202</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4568-0727</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2018-10, Vol.765, p.299-312
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2117574888
source ScienceDirect Freedom Collection 2022-2024
subjects Alloying elements
Alloys
Chemical reactions
Fusion reactors
Nuclear engineering
Nuclear fusion
Nuclear fusion reactor
Nuclear reactors
Nuclear safety
Oxidation
Oxidation resistance
Oxidation-resistant tungsten alloys
Plasma-facing material
Tungsten base alloys
Vacuum chambers
Water pollution
Water vapor
title An overview of oxidation-resistant tungsten alloys for nuclear fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20of%20oxidation-resistant%20tungsten%20alloys%20for%20nuclear%20fusion&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Liu,%20Dong%E2%80%93Guang&rft.date=2018-10-15&rft.volume=765&rft.spage=299&rft.epage=312&rft.pages=299-312&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.06.202&rft_dat=%3Cproquest_cross%3E2117574888%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117574888&rft_id=info:pmid/&rfr_iscdi=true