Loading…
An overview of oxidation-resistant tungsten alloys for nuclear fusion
Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloy...
Saved in:
Published in: | Journal of alloys and compounds 2018-10, Vol.765, p.299-312 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3 |
container_end_page | 312 |
container_issue | |
container_start_page | 299 |
container_title | Journal of alloys and compounds |
container_volume | 765 |
creator | Liu, Dong–Guang Zheng, Liang Luo, Lai–Ma Zan, Xiang Song, Jiu-Peng Xu, Qiu Zhu, Xiao–Yong Wu, Yu–Cheng |
description | Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloys facing the plasma may reach 1200 °C. At this temperature, tungsten are directly oxidized and volatilized, thus causing plasma pollution. The oxidation-resistant tungsten alloys in this study is expected to solve this problem. In this work, the improvements and mechanisms of different alloying elements with regard to the oxidation resistance of tungsten alloys, combined with the results in recent studies, were reviewed, and possible development trends were discussed.
•Adding Si or Cr in W can preferentially form a protective oxide film.•Adding Ti played a positive role in improving the oxidation resistance of the alloy.•W-Cr-Y alloy has more excellent oxidation resistance than W-Cr-Ti ternary alloy.•W-Cr-Y alloy after annealing has better oxidation resistance. |
doi_str_mv | 10.1016/j.jallcom.2018.06.202 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117574888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838818323235</els_id><sourcerecordid>2117574888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3</originalsourceid><addsrcrecordid>eNqFkE1LwzAcxoMoOKcfQQh4bk3SNk1OMsZ8gYEXPYc0_UdStmYm6XTf3ozt7um5PC88P4TuKSkpofxxKAe92Ri_LRmhoiQ8K7tAMyraqqg5l5doRiRrClEJcY1uYhwIIVRWdIZWixH7PYS9gx_sLfa_rtfJ-bEIEF1Mekw4TeNXTDDivOIPEVsf8DiZDeiA7RSz-RZdWb2JcHfWOfp8Xn0sX4v1-8vbcrEuTFW1qQAiZW1q1jTMSMstJRqM7LqWGgMWhNSG1LLuKRem5bzvgNak45qRxnRVb6o5ejj17oL_niAmNfgpjHlSMUrbpq2FENnVnFwm-BgDWLULbqvDQVGijsTUoM7E1JGYIjwry7mnUw7yhQwkqGgcjAZ6F8Ak1Xv3T8MfIKt4TA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117574888</pqid></control><display><type>article</type><title>An overview of oxidation-resistant tungsten alloys for nuclear fusion</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Dong–Guang ; Zheng, Liang ; Luo, Lai–Ma ; Zan, Xiang ; Song, Jiu-Peng ; Xu, Qiu ; Zhu, Xiao–Yong ; Wu, Yu–Cheng</creator><creatorcontrib>Liu, Dong–Guang ; Zheng, Liang ; Luo, Lai–Ma ; Zan, Xiang ; Song, Jiu-Peng ; Xu, Qiu ; Zhu, Xiao–Yong ; Wu, Yu–Cheng</creatorcontrib><description>Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloys facing the plasma may reach 1200 °C. At this temperature, tungsten are directly oxidized and volatilized, thus causing plasma pollution. The oxidation-resistant tungsten alloys in this study is expected to solve this problem. In this work, the improvements and mechanisms of different alloying elements with regard to the oxidation resistance of tungsten alloys, combined with the results in recent studies, were reviewed, and possible development trends were discussed.
•Adding Si or Cr in W can preferentially form a protective oxide film.•Adding Ti played a positive role in improving the oxidation resistance of the alloy.•W-Cr-Y alloy has more excellent oxidation resistance than W-Cr-Ti ternary alloy.•W-Cr-Y alloy after annealing has better oxidation resistance.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.06.202</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloying elements ; Alloys ; Chemical reactions ; Fusion reactors ; Nuclear engineering ; Nuclear fusion ; Nuclear fusion reactor ; Nuclear reactors ; Nuclear safety ; Oxidation ; Oxidation resistance ; Oxidation-resistant tungsten alloys ; Plasma-facing material ; Tungsten base alloys ; Vacuum chambers ; Water pollution ; Water vapor</subject><ispartof>Journal of alloys and compounds, 2018-10, Vol.765, p.299-312</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3</citedby><cites>FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3</cites><orcidid>0000-0003-4568-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Dong–Guang</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Luo, Lai–Ma</creatorcontrib><creatorcontrib>Zan, Xiang</creatorcontrib><creatorcontrib>Song, Jiu-Peng</creatorcontrib><creatorcontrib>Xu, Qiu</creatorcontrib><creatorcontrib>Zhu, Xiao–Yong</creatorcontrib><creatorcontrib>Wu, Yu–Cheng</creatorcontrib><title>An overview of oxidation-resistant tungsten alloys for nuclear fusion</title><title>Journal of alloys and compounds</title><description>Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloys facing the plasma may reach 1200 °C. At this temperature, tungsten are directly oxidized and volatilized, thus causing plasma pollution. The oxidation-resistant tungsten alloys in this study is expected to solve this problem. In this work, the improvements and mechanisms of different alloying elements with regard to the oxidation resistance of tungsten alloys, combined with the results in recent studies, were reviewed, and possible development trends were discussed.
•Adding Si or Cr in W can preferentially form a protective oxide film.•Adding Ti played a positive role in improving the oxidation resistance of the alloy.•W-Cr-Y alloy has more excellent oxidation resistance than W-Cr-Ti ternary alloy.•W-Cr-Y alloy after annealing has better oxidation resistance.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Chemical reactions</subject><subject>Fusion reactors</subject><subject>Nuclear engineering</subject><subject>Nuclear fusion</subject><subject>Nuclear fusion reactor</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxidation-resistant tungsten alloys</subject><subject>Plasma-facing material</subject><subject>Tungsten base alloys</subject><subject>Vacuum chambers</subject><subject>Water pollution</subject><subject>Water vapor</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LwzAcxoMoOKcfQQh4bk3SNk1OMsZ8gYEXPYc0_UdStmYm6XTf3ozt7um5PC88P4TuKSkpofxxKAe92Ri_LRmhoiQ8K7tAMyraqqg5l5doRiRrClEJcY1uYhwIIVRWdIZWixH7PYS9gx_sLfa_rtfJ-bEIEF1Mekw4TeNXTDDivOIPEVsf8DiZDeiA7RSz-RZdWb2JcHfWOfp8Xn0sX4v1-8vbcrEuTFW1qQAiZW1q1jTMSMstJRqM7LqWGgMWhNSG1LLuKRem5bzvgNak45qRxnRVb6o5ejj17oL_niAmNfgpjHlSMUrbpq2FENnVnFwm-BgDWLULbqvDQVGijsTUoM7E1JGYIjwry7mnUw7yhQwkqGgcjAZ6F8Ak1Xv3T8MfIKt4TA</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Liu, Dong–Guang</creator><creator>Zheng, Liang</creator><creator>Luo, Lai–Ma</creator><creator>Zan, Xiang</creator><creator>Song, Jiu-Peng</creator><creator>Xu, Qiu</creator><creator>Zhu, Xiao–Yong</creator><creator>Wu, Yu–Cheng</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4568-0727</orcidid></search><sort><creationdate>20181015</creationdate><title>An overview of oxidation-resistant tungsten alloys for nuclear fusion</title><author>Liu, Dong–Guang ; Zheng, Liang ; Luo, Lai–Ma ; Zan, Xiang ; Song, Jiu-Peng ; Xu, Qiu ; Zhu, Xiao–Yong ; Wu, Yu–Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Chemical reactions</topic><topic>Fusion reactors</topic><topic>Nuclear engineering</topic><topic>Nuclear fusion</topic><topic>Nuclear fusion reactor</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxidation-resistant tungsten alloys</topic><topic>Plasma-facing material</topic><topic>Tungsten base alloys</topic><topic>Vacuum chambers</topic><topic>Water pollution</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dong–Guang</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Luo, Lai–Ma</creatorcontrib><creatorcontrib>Zan, Xiang</creatorcontrib><creatorcontrib>Song, Jiu-Peng</creatorcontrib><creatorcontrib>Xu, Qiu</creatorcontrib><creatorcontrib>Zhu, Xiao–Yong</creatorcontrib><creatorcontrib>Wu, Yu–Cheng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dong–Guang</au><au>Zheng, Liang</au><au>Luo, Lai–Ma</au><au>Zan, Xiang</au><au>Song, Jiu-Peng</au><au>Xu, Qiu</au><au>Zhu, Xiao–Yong</au><au>Wu, Yu–Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview of oxidation-resistant tungsten alloys for nuclear fusion</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>765</volume><spage>299</spage><epage>312</epage><pages>299-312</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Fusion reactors undergo severe particle radiation and require advanced plasma-facing materials. After an accident, the lack of coolant causes water vapor to enter the vacuum chamber, which brings serious safety risks to the material. In the absence of a coolant, the temperature of the tungsten alloys facing the plasma may reach 1200 °C. At this temperature, tungsten are directly oxidized and volatilized, thus causing plasma pollution. The oxidation-resistant tungsten alloys in this study is expected to solve this problem. In this work, the improvements and mechanisms of different alloying elements with regard to the oxidation resistance of tungsten alloys, combined with the results in recent studies, were reviewed, and possible development trends were discussed.
•Adding Si or Cr in W can preferentially form a protective oxide film.•Adding Ti played a positive role in improving the oxidation resistance of the alloy.•W-Cr-Y alloy has more excellent oxidation resistance than W-Cr-Ti ternary alloy.•W-Cr-Y alloy after annealing has better oxidation resistance.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2018.06.202</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4568-0727</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2018-10, Vol.765, p.299-312 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2117574888 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Alloying elements Alloys Chemical reactions Fusion reactors Nuclear engineering Nuclear fusion Nuclear fusion reactor Nuclear reactors Nuclear safety Oxidation Oxidation resistance Oxidation-resistant tungsten alloys Plasma-facing material Tungsten base alloys Vacuum chambers Water pollution Water vapor |
title | An overview of oxidation-resistant tungsten alloys for nuclear fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20of%20oxidation-resistant%20tungsten%20alloys%20for%20nuclear%20fusion&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Liu,%20Dong%E2%80%93Guang&rft.date=2018-10-15&rft.volume=765&rft.spage=299&rft.epage=312&rft.pages=299-312&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.06.202&rft_dat=%3Cproquest_cross%3E2117574888%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-e0994c42552c9f6f10aec9bb71ccefe89ac0494d168c766dbe140b6a205cb3dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117574888&rft_id=info:pmid/&rfr_iscdi=true |