Loading…

A Hybrid Approach for Trajectory Control Design

This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-11
Main Authors: Freda, Luigi, Gianni, Mario, Pirri, Fiora
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Freda, Luigi
Gianni, Mario
Pirri, Fiora
description This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terramechanics analysis to directly estimate from data the robot dynamics on a wide class of trajectories. Experiments in both real and simulated environments prove that the proposed methodology is promising.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2117612601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117612601</sourcerecordid><originalsourceid>FETCH-proquest_journals_21176126013</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd1TwqEwqykxRcCwoKMpPTM5QSMsvUggpSsxKTS7JL6pUcM7PKynKz1FwSS3OTM_jYWBNS8wpTuWF0twMym6uIc4eukDNhaWpxSXxWfmlRXlAqXgjQ0NzM0MjMwNDY-JUAQDsxDIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117612601</pqid></control><display><type>article</type><title>A Hybrid Approach for Trajectory Control Design</title><source>Publicly Available Content (ProQuest)</source><creator>Freda, Luigi ; Gianni, Mario ; Pirri, Fiora</creator><creatorcontrib>Freda, Luigi ; Gianni, Mario ; Pirri, Fiora</creatorcontrib><description>This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terramechanics analysis to directly estimate from data the robot dynamics on a wide class of trajectories. Experiments in both real and simulated environments prove that the proposed methodology is promising.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Feedback control ; Gaussian process ; Robot dynamics ; Statistical models ; Tracking control ; Trajectory control</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2117612601?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Freda, Luigi</creatorcontrib><creatorcontrib>Gianni, Mario</creatorcontrib><creatorcontrib>Pirri, Fiora</creatorcontrib><title>A Hybrid Approach for Trajectory Control Design</title><title>arXiv.org</title><description>This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terramechanics analysis to directly estimate from data the robot dynamics on a wide class of trajectories. Experiments in both real and simulated environments prove that the proposed methodology is promising.</description><subject>Computer simulation</subject><subject>Feedback control</subject><subject>Gaussian process</subject><subject>Robot dynamics</subject><subject>Statistical models</subject><subject>Tracking control</subject><subject>Trajectory control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd1TwqEwqykxRcCwoKMpPTM5QSMsvUggpSsxKTS7JL6pUcM7PKynKz1FwSS3OTM_jYWBNS8wpTuWF0twMym6uIc4eukDNhaWpxSXxWfmlRXlAqXgjQ0NzM0MjMwNDY-JUAQDsxDIk</recordid><startdate>20221119</startdate><enddate>20221119</enddate><creator>Freda, Luigi</creator><creator>Gianni, Mario</creator><creator>Pirri, Fiora</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221119</creationdate><title>A Hybrid Approach for Trajectory Control Design</title><author>Freda, Luigi ; Gianni, Mario ; Pirri, Fiora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21176126013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer simulation</topic><topic>Feedback control</topic><topic>Gaussian process</topic><topic>Robot dynamics</topic><topic>Statistical models</topic><topic>Tracking control</topic><topic>Trajectory control</topic><toplevel>online_resources</toplevel><creatorcontrib>Freda, Luigi</creatorcontrib><creatorcontrib>Gianni, Mario</creatorcontrib><creatorcontrib>Pirri, Fiora</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freda, Luigi</au><au>Gianni, Mario</au><au>Pirri, Fiora</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Hybrid Approach for Trajectory Control Design</atitle><jtitle>arXiv.org</jtitle><date>2022-11-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terramechanics analysis to directly estimate from data the robot dynamics on a wide class of trajectories. Experiments in both real and simulated environments prove that the proposed methodology is promising.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2117612601
source Publicly Available Content (ProQuest)
subjects Computer simulation
Feedback control
Gaussian process
Robot dynamics
Statistical models
Tracking control
Trajectory control
title A Hybrid Approach for Trajectory Control Design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Hybrid%20Approach%20for%20Trajectory%20Control%20Design&rft.jtitle=arXiv.org&rft.au=Freda,%20Luigi&rft.date=2022-11-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2117612601%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21176126013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117612601&rft_id=info:pmid/&rfr_iscdi=true