Loading…
A Hybrid Approach for Trajectory Control Design
This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terr...
Saved in:
Published in: | arXiv.org 2022-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Freda, Luigi Gianni, Mario Pirri, Fiora |
description | This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terramechanics analysis to directly estimate from data the robot dynamics on a wide class of trajectories. Experiments in both real and simulated environments prove that the proposed methodology is promising. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2117612601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117612601</sourcerecordid><originalsourceid>FETCH-proquest_journals_21176126013</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd1TwqEwqykxRcCwoKMpPTM5QSMsvUggpSsxKTS7JL6pUcM7PKynKz1FwSS3OTM_jYWBNS8wpTuWF0twMym6uIc4eukDNhaWpxSXxWfmlRXlAqXgjQ0NzM0MjMwNDY-JUAQDsxDIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117612601</pqid></control><display><type>article</type><title>A Hybrid Approach for Trajectory Control Design</title><source>Publicly Available Content (ProQuest)</source><creator>Freda, Luigi ; Gianni, Mario ; Pirri, Fiora</creator><creatorcontrib>Freda, Luigi ; Gianni, Mario ; Pirri, Fiora</creatorcontrib><description>This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terramechanics analysis to directly estimate from data the robot dynamics on a wide class of trajectories. Experiments in both real and simulated environments prove that the proposed methodology is promising.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Feedback control ; Gaussian process ; Robot dynamics ; Statistical models ; Tracking control ; Trajectory control</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2117612601?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Freda, Luigi</creatorcontrib><creatorcontrib>Gianni, Mario</creatorcontrib><creatorcontrib>Pirri, Fiora</creatorcontrib><title>A Hybrid Approach for Trajectory Control Design</title><title>arXiv.org</title><description>This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terramechanics analysis to directly estimate from data the robot dynamics on a wide class of trajectories. Experiments in both real and simulated environments prove that the proposed methodology is promising.</description><subject>Computer simulation</subject><subject>Feedback control</subject><subject>Gaussian process</subject><subject>Robot dynamics</subject><subject>Statistical models</subject><subject>Tracking control</subject><subject>Trajectory control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd1TwqEwqykxRcCwoKMpPTM5QSMsvUggpSsxKTS7JL6pUcM7PKynKz1FwSS3OTM_jYWBNS8wpTuWF0twMym6uIc4eukDNhaWpxSXxWfmlRXlAqXgjQ0NzM0MjMwNDY-JUAQDsxDIk</recordid><startdate>20221119</startdate><enddate>20221119</enddate><creator>Freda, Luigi</creator><creator>Gianni, Mario</creator><creator>Pirri, Fiora</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221119</creationdate><title>A Hybrid Approach for Trajectory Control Design</title><author>Freda, Luigi ; Gianni, Mario ; Pirri, Fiora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21176126013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer simulation</topic><topic>Feedback control</topic><topic>Gaussian process</topic><topic>Robot dynamics</topic><topic>Statistical models</topic><topic>Tracking control</topic><topic>Trajectory control</topic><toplevel>online_resources</toplevel><creatorcontrib>Freda, Luigi</creatorcontrib><creatorcontrib>Gianni, Mario</creatorcontrib><creatorcontrib>Pirri, Fiora</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freda, Luigi</au><au>Gianni, Mario</au><au>Pirri, Fiora</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Hybrid Approach for Trajectory Control Design</atitle><jtitle>arXiv.org</jtitle><date>2022-11-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This work presents a methodology to design trajectory tracking feedback control laws, which embed non-parametric statistical models, such as Gaussian Processes (GPs). The aim is to minimize unmodeled dynamics such as undesired slippages. The proposed approach has the benefit of avoiding complex terramechanics analysis to directly estimate from data the robot dynamics on a wide class of trajectories. Experiments in both real and simulated environments prove that the proposed methodology is promising.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2117612601 |
source | Publicly Available Content (ProQuest) |
subjects | Computer simulation Feedback control Gaussian process Robot dynamics Statistical models Tracking control Trajectory control |
title | A Hybrid Approach for Trajectory Control Design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Hybrid%20Approach%20for%20Trajectory%20Control%20Design&rft.jtitle=arXiv.org&rft.au=Freda,%20Luigi&rft.date=2022-11-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2117612601%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21176126013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117612601&rft_id=info:pmid/&rfr_iscdi=true |