Loading…
Bayesian nonparametric survival analysis using mixture of Burr XII distributions
Recently, the Bayesian nonparametric approaches in survival studies attract much more attentions. Because of multimodality in survival data, the mixture models are very common. We introduce a Bayesian nonparametric mixture model with Burr distribution (Burr type XII) as the kernel. Since the Burr di...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2018-10, Vol.47 (9), p.2724-2738 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, the Bayesian nonparametric approaches in survival studies attract much more attentions. Because of multimodality in survival data, the mixture models are very common. We introduce a Bayesian nonparametric mixture model with Burr distribution (Burr type XII) as the kernel. Since the Burr distribution shares good properties of common distributions on survival analysis, it has more flexibility than other distributions. By applying this model to simulated and real failure time datasets, we show the preference of this model and compare it with Dirichlet process mixture models with different kernels. The Markov chain Monte Carlo (MCMC) simulation methods to calculate the posterior distribution are used. |
---|---|
ISSN: | 0361-0918 1532-4141 |
DOI: | 10.1080/03610918.2017.1359286 |