Loading…

Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data

Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the geneti...

Full description

Saved in:
Bibliographic Details
Published in:Progress in artificial intelligence 2018-12, Vol.7 (4), p.399-410
Main Authors: Pino Angulo, Adrian, Shin, Kilho, Velázquez-Rodríguez, Camilo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03
cites cdi_FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03
container_end_page 410
container_issue 4
container_start_page 399
container_title Progress in artificial intelligence
container_volume 7
creator Pino Angulo, Adrian
Shin, Kilho
Velázquez-Rodríguez, Camilo
description Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony ( Gbc ) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the Gbc and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of Gbc with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in Gbc , and (iii) improving the exploitation method in Gbc , our experiments in microarray data sets reveal that our new method Gbc+ is not only significantly more accurate, but also around ten times faster on average than the original
doi_str_mv 10.1007/s13748-018-0161-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117854727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117854727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EElXpB7CzxDrgRxInS1TxqFSJDawtxxmnrhK72C5S-XrSpoIVi9HM4tw7MxehW0ruKSHiIVIu8ioj9FglzeoLNGO0ZlnJS3L5OxfsGi1i3BJCGM0J5fkMdathF_yXdR1OG8AdOEhW4wYAa997d8B-l-xgv1Wy3mHVdz7YtBmw8QGDMVZbcOmkwxF60CfMOjxYHbwKQR1wq5K6QVdG9REW5z5HH89P78vXbP32slo-rjPNK5ayhqtaNUaAasuK5Y1pFWmq1pCWMyCKU86Z1oXOK1LkbVs0phRCVKwRteJCET5Hd5Pv-NXnHmKSW78PblwpGaWiKnLBxEjRiRpvjDGAkbtgBxUOkhJ5jFROkcoxUnmMVNajhk2aOLKug_Dn_L_oB7Kqeuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117854727</pqid></control><display><type>article</type><title>Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data</title><source>Springer Nature</source><creator>Pino Angulo, Adrian ; Shin, Kilho ; Velázquez-Rodríguez, Camilo</creator><creatorcontrib>Pino Angulo, Adrian ; Shin, Kilho ; Velázquez-Rodríguez, Camilo</creatorcontrib><description>Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony ( Gbc ) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the Gbc and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of Gbc with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in Gbc , and (iii) improving the exploitation method in Gbc , our experiments in microarray data sets reveal that our new method Gbc+ is not only significantly more accurate, but also around ten times faster on average than the original</description><identifier>ISSN: 2192-6352</identifier><identifier>EISSN: 2192-6360</identifier><identifier>DOI: 10.1007/s13748-018-0161-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Ant colony optimization ; Artificial Intelligence ; Biomedical data ; Computational Intelligence ; Computer Imaging ; Computer Science ; Control ; Critical components ; Data analysis ; Data mining ; Data Mining and Knowledge Discovery ; Filtration ; Mechatronics ; Natural Language Processing (NLP) ; Optimization algorithms ; Pattern Recognition and Graphics ; Regular Paper ; Robotics ; Vision ; Workflow</subject><ispartof>Progress in artificial intelligence, 2018-12, Vol.7 (4), p.399-410</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03</citedby><cites>FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03</cites><orcidid>0000-0002-2386-2098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pino Angulo, Adrian</creatorcontrib><creatorcontrib>Shin, Kilho</creatorcontrib><creatorcontrib>Velázquez-Rodríguez, Camilo</creatorcontrib><title>Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data</title><title>Progress in artificial intelligence</title><addtitle>Prog Artif Intell</addtitle><description>Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony ( Gbc ) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the Gbc and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of Gbc with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in Gbc , and (iii) improving the exploitation method in Gbc , our experiments in microarray data sets reveal that our new method Gbc+ is not only significantly more accurate, but also around ten times faster on average than the original</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Artificial Intelligence</subject><subject>Biomedical data</subject><subject>Computational Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Control</subject><subject>Critical components</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Filtration</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Optimization algorithms</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Vision</subject><subject>Workflow</subject><issn>2192-6352</issn><issn>2192-6360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EElXpB7CzxDrgRxInS1TxqFSJDawtxxmnrhK72C5S-XrSpoIVi9HM4tw7MxehW0ruKSHiIVIu8ioj9FglzeoLNGO0ZlnJS3L5OxfsGi1i3BJCGM0J5fkMdathF_yXdR1OG8AdOEhW4wYAa997d8B-l-xgv1Wy3mHVdz7YtBmw8QGDMVZbcOmkwxF60CfMOjxYHbwKQR1wq5K6QVdG9REW5z5HH89P78vXbP32slo-rjPNK5ayhqtaNUaAasuK5Y1pFWmq1pCWMyCKU86Z1oXOK1LkbVs0phRCVKwRteJCET5Hd5Pv-NXnHmKSW78PblwpGaWiKnLBxEjRiRpvjDGAkbtgBxUOkhJ5jFROkcoxUnmMVNajhk2aOLKug_Dn_L_oB7Kqeuc</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Pino Angulo, Adrian</creator><creator>Shin, Kilho</creator><creator>Velázquez-Rodríguez, Camilo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2386-2098</orcidid></search><sort><creationdate>20181201</creationdate><title>Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data</title><author>Pino Angulo, Adrian ; Shin, Kilho ; Velázquez-Rodríguez, Camilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Artificial Intelligence</topic><topic>Biomedical data</topic><topic>Computational Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Control</topic><topic>Critical components</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Filtration</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Optimization algorithms</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Vision</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pino Angulo, Adrian</creatorcontrib><creatorcontrib>Shin, Kilho</creatorcontrib><creatorcontrib>Velázquez-Rodríguez, Camilo</creatorcontrib><collection>CrossRef</collection><jtitle>Progress in artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pino Angulo, Adrian</au><au>Shin, Kilho</au><au>Velázquez-Rodríguez, Camilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data</atitle><jtitle>Progress in artificial intelligence</jtitle><stitle>Prog Artif Intell</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>7</volume><issue>4</issue><spage>399</spage><epage>410</epage><pages>399-410</pages><issn>2192-6352</issn><eissn>2192-6360</eissn><abstract>Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony ( Gbc ) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the Gbc and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of Gbc with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in Gbc , and (iii) improving the exploitation method in Gbc , our experiments in microarray data sets reveal that our new method Gbc+ is not only significantly more accurate, but also around ten times faster on average than the original</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13748-018-0161-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2386-2098</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-6352
ispartof Progress in artificial intelligence, 2018-12, Vol.7 (4), p.399-410
issn 2192-6352
2192-6360
language eng
recordid cdi_proquest_journals_2117854727
source Springer Nature
subjects Algorithms
Ant colony optimization
Artificial Intelligence
Biomedical data
Computational Intelligence
Computer Imaging
Computer Science
Control
Critical components
Data analysis
Data mining
Data Mining and Knowledge Discovery
Filtration
Mechatronics
Natural Language Processing (NLP)
Optimization algorithms
Pattern Recognition and Graphics
Regular Paper
Robotics
Vision
Workflow
title Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20genetic%20bee%20colony%20optimization%20algorithm%20for%20efficient%20gene%20selection%20in%20microarray%20data&rft.jtitle=Progress%20in%20artificial%20intelligence&rft.au=Pino%20Angulo,%20Adrian&rft.date=2018-12-01&rft.volume=7&rft.issue=4&rft.spage=399&rft.epage=410&rft.pages=399-410&rft.issn=2192-6352&rft.eissn=2192-6360&rft_id=info:doi/10.1007/s13748-018-0161-9&rft_dat=%3Cproquest_cross%3E2117854727%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117854727&rft_id=info:pmid/&rfr_iscdi=true