Loading…
Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data
Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the geneti...
Saved in:
Published in: | Progress in artificial intelligence 2018-12, Vol.7 (4), p.399-410 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03 |
container_end_page | 410 |
container_issue | 4 |
container_start_page | 399 |
container_title | Progress in artificial intelligence |
container_volume | 7 |
creator | Pino Angulo, Adrian Shin, Kilho Velázquez-Rodríguez, Camilo |
description | Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony (
Gbc
) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the
Gbc
and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of
Gbc
with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in
Gbc
, and (iii) improving the exploitation method in
Gbc
, our experiments in microarray data sets reveal that our new method
Gbc+
is not only significantly more accurate, but also around ten times faster on average than the original |
doi_str_mv | 10.1007/s13748-018-0161-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117854727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117854727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EElXpB7CzxDrgRxInS1TxqFSJDawtxxmnrhK72C5S-XrSpoIVi9HM4tw7MxehW0ruKSHiIVIu8ioj9FglzeoLNGO0ZlnJS3L5OxfsGi1i3BJCGM0J5fkMdathF_yXdR1OG8AdOEhW4wYAa997d8B-l-xgv1Wy3mHVdz7YtBmw8QGDMVZbcOmkwxF60CfMOjxYHbwKQR1wq5K6QVdG9REW5z5HH89P78vXbP32slo-rjPNK5ayhqtaNUaAasuK5Y1pFWmq1pCWMyCKU86Z1oXOK1LkbVs0phRCVKwRteJCET5Hd5Pv-NXnHmKSW78PblwpGaWiKnLBxEjRiRpvjDGAkbtgBxUOkhJ5jFROkcoxUnmMVNajhk2aOLKug_Dn_L_oB7Kqeuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117854727</pqid></control><display><type>article</type><title>Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data</title><source>Springer Nature</source><creator>Pino Angulo, Adrian ; Shin, Kilho ; Velázquez-Rodríguez, Camilo</creator><creatorcontrib>Pino Angulo, Adrian ; Shin, Kilho ; Velázquez-Rodríguez, Camilo</creatorcontrib><description>Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony (
Gbc
) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the
Gbc
and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of
Gbc
with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in
Gbc
, and (iii) improving the exploitation method in
Gbc
, our experiments in microarray data sets reveal that our new method
Gbc+
is not only significantly more accurate, but also around ten times faster on average than the original</description><identifier>ISSN: 2192-6352</identifier><identifier>EISSN: 2192-6360</identifier><identifier>DOI: 10.1007/s13748-018-0161-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Ant colony optimization ; Artificial Intelligence ; Biomedical data ; Computational Intelligence ; Computer Imaging ; Computer Science ; Control ; Critical components ; Data analysis ; Data mining ; Data Mining and Knowledge Discovery ; Filtration ; Mechatronics ; Natural Language Processing (NLP) ; Optimization algorithms ; Pattern Recognition and Graphics ; Regular Paper ; Robotics ; Vision ; Workflow</subject><ispartof>Progress in artificial intelligence, 2018-12, Vol.7 (4), p.399-410</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03</citedby><cites>FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03</cites><orcidid>0000-0002-2386-2098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pino Angulo, Adrian</creatorcontrib><creatorcontrib>Shin, Kilho</creatorcontrib><creatorcontrib>Velázquez-Rodríguez, Camilo</creatorcontrib><title>Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data</title><title>Progress in artificial intelligence</title><addtitle>Prog Artif Intell</addtitle><description>Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony (
Gbc
) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the
Gbc
and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of
Gbc
with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in
Gbc
, and (iii) improving the exploitation method in
Gbc
, our experiments in microarray data sets reveal that our new method
Gbc+
is not only significantly more accurate, but also around ten times faster on average than the original</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Artificial Intelligence</subject><subject>Biomedical data</subject><subject>Computational Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Control</subject><subject>Critical components</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Filtration</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Optimization algorithms</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Vision</subject><subject>Workflow</subject><issn>2192-6352</issn><issn>2192-6360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EElXpB7CzxDrgRxInS1TxqFSJDawtxxmnrhK72C5S-XrSpoIVi9HM4tw7MxehW0ruKSHiIVIu8ioj9FglzeoLNGO0ZlnJS3L5OxfsGi1i3BJCGM0J5fkMdathF_yXdR1OG8AdOEhW4wYAa997d8B-l-xgv1Wy3mHVdz7YtBmw8QGDMVZbcOmkwxF60CfMOjxYHbwKQR1wq5K6QVdG9REW5z5HH89P78vXbP32slo-rjPNK5ayhqtaNUaAasuK5Y1pFWmq1pCWMyCKU86Z1oXOK1LkbVs0phRCVKwRteJCET5Hd5Pv-NXnHmKSW78PblwpGaWiKnLBxEjRiRpvjDGAkbtgBxUOkhJ5jFROkcoxUnmMVNajhk2aOLKug_Dn_L_oB7Kqeuc</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Pino Angulo, Adrian</creator><creator>Shin, Kilho</creator><creator>Velázquez-Rodríguez, Camilo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2386-2098</orcidid></search><sort><creationdate>20181201</creationdate><title>Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data</title><author>Pino Angulo, Adrian ; Shin, Kilho ; Velázquez-Rodríguez, Camilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Artificial Intelligence</topic><topic>Biomedical data</topic><topic>Computational Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Control</topic><topic>Critical components</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Filtration</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Optimization algorithms</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Vision</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pino Angulo, Adrian</creatorcontrib><creatorcontrib>Shin, Kilho</creatorcontrib><creatorcontrib>Velázquez-Rodríguez, Camilo</creatorcontrib><collection>CrossRef</collection><jtitle>Progress in artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pino Angulo, Adrian</au><au>Shin, Kilho</au><au>Velázquez-Rodríguez, Camilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data</atitle><jtitle>Progress in artificial intelligence</jtitle><stitle>Prog Artif Intell</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>7</volume><issue>4</issue><spage>399</spage><epage>410</epage><pages>399-410</pages><issn>2192-6352</issn><eissn>2192-6360</eissn><abstract>Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony (
Gbc
) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the
Gbc
and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of
Gbc
with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in
Gbc
, and (iii) improving the exploitation method in
Gbc
, our experiments in microarray data sets reveal that our new method
Gbc+
is not only significantly more accurate, but also around ten times faster on average than the original</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13748-018-0161-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2386-2098</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-6352 |
ispartof | Progress in artificial intelligence, 2018-12, Vol.7 (4), p.399-410 |
issn | 2192-6352 2192-6360 |
language | eng |
recordid | cdi_proquest_journals_2117854727 |
source | Springer Nature |
subjects | Algorithms Ant colony optimization Artificial Intelligence Biomedical data Computational Intelligence Computer Imaging Computer Science Control Critical components Data analysis Data mining Data Mining and Knowledge Discovery Filtration Mechatronics Natural Language Processing (NLP) Optimization algorithms Pattern Recognition and Graphics Regular Paper Robotics Vision Workflow |
title | Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20genetic%20bee%20colony%20optimization%20algorithm%20for%20efficient%20gene%20selection%20in%20microarray%20data&rft.jtitle=Progress%20in%20artificial%20intelligence&rft.au=Pino%20Angulo,%20Adrian&rft.date=2018-12-01&rft.volume=7&rft.issue=4&rft.spage=399&rft.epage=410&rft.pages=399-410&rft.issn=2192-6352&rft.eissn=2192-6360&rft_id=info:doi/10.1007/s13748-018-0161-9&rft_dat=%3Cproquest_cross%3E2117854727%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117854727&rft_id=info:pmid/&rfr_iscdi=true |