Loading…

Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar

In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, an...

Full description

Saved in:
Bibliographic Details
Published in:Monthly weather review 2018-07, Vol.146 (7), p.2103-2124
Main Authors: Mahre, Andrew, Kurdzo, James M., Bodine, David J., Griffin, Casey B., Palmer, Robert D., Yu, Tian-You
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3
cites cdi_FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3
container_end_page 2124
container_issue 7
container_start_page 2103
container_title Monthly weather review
container_volume 146
creator Mahre, Andrew
Kurdzo, James M.
Bodine, David J.
Griffin, Casey B.
Palmer, Robert D.
Yu, Tian-You
description In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, and a ground-based velocity track display (GBVTD) analysis. This study is novel in that it uses high-resolution mobile radar data (update time of 6–7 s) in tandem with polarimetric data from KFDR in order to identify possible areas of debris, including a debris ring contained within the outer vortex circulation. Leveraging the high spatiotemporal resolution of the AIR with the polarimetric capability of KFDR leads to analysis of reflectivity distributions, debris lofting, kinematic changes, and oscillations in tornado intensity during a portion of the mature stage of the tornado, with a particular focus on the relationship between changes in the reflectivity field and dynamical changes around the tornado. Debris is lofted in a high-reflectivity concentric ring of increasing radius and height around the tornado over several minutes, within the outer weak-echo hole (WEH). Simultaneously, debris lofting and asymmetric reflectivity distribution around the WEH coincide with changes in vortex tilt on multiple occasions. In one instance, hydrometeor fallout appears to precede a possible descending reflectivity core. Using the GBVTD results, near-surface convergence intensifies at the same time and location as when the debris ring is lofted. Additionally, strengthening of the tornado via multiple modes of vertical evolution (i.e., bottom-up intensification over time vs simultaneous intensification throughout the lowest few hundred meters) is observed.
doi_str_mv 10.1175/MWR-D-17-0256.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117947971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117947971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3</originalsourceid><addsrcrecordid>eNotkD1vwjAYhK2qlUpp566WuhLw69gJGREfBQmEREEdrTeJQ0KTOLXDwNaf3lA6nXR3OukeQl6BDQFCOdp87ryZB6HHuAyGcEd6IDnzmIj8e9JjjHdJIMQjeXLuxBgLAsF75GdSY3lxhaMmo22uKQR0gxfKGUi6L5rW1AO6_SoxNxUO6Hzh-XRvbI2podjSZXHM6UeDbWFaXTXGYkl32pny3Dk1PbiiPv7NTtrKuCbXtkjoqsLj1d9hivaZPGRYOv3yr31yWMz306W33r6vppO1l_jAWs-HQMYyZjEIPwh5AgJklvgykhyTRIQwDqUMNCKk2ThGLnScZWMRpYKjzhj6ffJ2222s-T5r16qTOXc_Sqd4xy8SYRRC1xrdWok1zlmdqcYWFdqLAqaumFWHWc0UhOqKWYH_C0_Wbxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117947971</pqid></control><display><type>article</type><title>Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Mahre, Andrew ; Kurdzo, James M. ; Bodine, David J. ; Griffin, Casey B. ; Palmer, Robert D. ; Yu, Tian-You</creator><creatorcontrib>Mahre, Andrew ; Kurdzo, James M. ; Bodine, David J. ; Griffin, Casey B. ; Palmer, Robert D. ; Yu, Tian-You</creatorcontrib><description>In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, and a ground-based velocity track display (GBVTD) analysis. This study is novel in that it uses high-resolution mobile radar data (update time of 6–7 s) in tandem with polarimetric data from KFDR in order to identify possible areas of debris, including a debris ring contained within the outer vortex circulation. Leveraging the high spatiotemporal resolution of the AIR with the polarimetric capability of KFDR leads to analysis of reflectivity distributions, debris lofting, kinematic changes, and oscillations in tornado intensity during a portion of the mature stage of the tornado, with a particular focus on the relationship between changes in the reflectivity field and dynamical changes around the tornado. Debris is lofted in a high-reflectivity concentric ring of increasing radius and height around the tornado over several minutes, within the outer weak-echo hole (WEH). Simultaneously, debris lofting and asymmetric reflectivity distribution around the WEH coincide with changes in vortex tilt on multiple occasions. In one instance, hydrometeor fallout appears to precede a possible descending reflectivity core. Using the GBVTD results, near-surface convergence intensifies at the same time and location as when the debris ring is lofted. Additionally, strengthening of the tornado via multiple modes of vertical evolution (i.e., bottom-up intensification over time vs simultaneous intensification throughout the lowest few hundred meters) is observed.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-17-0256.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Aerodynamics ; Air ; Amplification ; Data ; Debris ; Detritus ; Doppler effect ; Echoes ; Evolution ; Fallout ; Height ; Hydrometeors ; Imaging radar ; Imaging techniques ; Kinematics ; Lofting ; Measuring instruments ; Medical imaging ; Meteorology ; Oscillations ; Radar ; Radar data ; Radar imaging ; Radar polarimetry ; Reflectance ; Research centers ; Resolution ; Skewed distributions ; Studies ; Tornadoes ; Vortices ; Wind</subject><ispartof>Monthly weather review, 2018-07, Vol.146 (7), p.2103-2124</ispartof><rights>Copyright American Meteorological Society Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3</citedby><cites>FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahre, Andrew</creatorcontrib><creatorcontrib>Kurdzo, James M.</creatorcontrib><creatorcontrib>Bodine, David J.</creatorcontrib><creatorcontrib>Griffin, Casey B.</creatorcontrib><creatorcontrib>Palmer, Robert D.</creatorcontrib><creatorcontrib>Yu, Tian-You</creatorcontrib><title>Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar</title><title>Monthly weather review</title><description>In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, and a ground-based velocity track display (GBVTD) analysis. This study is novel in that it uses high-resolution mobile radar data (update time of 6–7 s) in tandem with polarimetric data from KFDR in order to identify possible areas of debris, including a debris ring contained within the outer vortex circulation. Leveraging the high spatiotemporal resolution of the AIR with the polarimetric capability of KFDR leads to analysis of reflectivity distributions, debris lofting, kinematic changes, and oscillations in tornado intensity during a portion of the mature stage of the tornado, with a particular focus on the relationship between changes in the reflectivity field and dynamical changes around the tornado. Debris is lofted in a high-reflectivity concentric ring of increasing radius and height around the tornado over several minutes, within the outer weak-echo hole (WEH). Simultaneously, debris lofting and asymmetric reflectivity distribution around the WEH coincide with changes in vortex tilt on multiple occasions. In one instance, hydrometeor fallout appears to precede a possible descending reflectivity core. Using the GBVTD results, near-surface convergence intensifies at the same time and location as when the debris ring is lofted. Additionally, strengthening of the tornado via multiple modes of vertical evolution (i.e., bottom-up intensification over time vs simultaneous intensification throughout the lowest few hundred meters) is observed.</description><subject>Aerodynamics</subject><subject>Air</subject><subject>Amplification</subject><subject>Data</subject><subject>Debris</subject><subject>Detritus</subject><subject>Doppler effect</subject><subject>Echoes</subject><subject>Evolution</subject><subject>Fallout</subject><subject>Height</subject><subject>Hydrometeors</subject><subject>Imaging radar</subject><subject>Imaging techniques</subject><subject>Kinematics</subject><subject>Lofting</subject><subject>Measuring instruments</subject><subject>Medical imaging</subject><subject>Meteorology</subject><subject>Oscillations</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Reflectance</subject><subject>Research centers</subject><subject>Resolution</subject><subject>Skewed distributions</subject><subject>Studies</subject><subject>Tornadoes</subject><subject>Vortices</subject><subject>Wind</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkD1vwjAYhK2qlUpp566WuhLw69gJGREfBQmEREEdrTeJQ0KTOLXDwNaf3lA6nXR3OukeQl6BDQFCOdp87ryZB6HHuAyGcEd6IDnzmIj8e9JjjHdJIMQjeXLuxBgLAsF75GdSY3lxhaMmo22uKQR0gxfKGUi6L5rW1AO6_SoxNxUO6Hzh-XRvbI2podjSZXHM6UeDbWFaXTXGYkl32pny3Dk1PbiiPv7NTtrKuCbXtkjoqsLj1d9hivaZPGRYOv3yr31yWMz306W33r6vppO1l_jAWs-HQMYyZjEIPwh5AgJklvgykhyTRIQwDqUMNCKk2ThGLnScZWMRpYKjzhj6ffJ2222s-T5r16qTOXc_Sqd4xy8SYRRC1xrdWok1zlmdqcYWFdqLAqaumFWHWc0UhOqKWYH_C0_Wbxg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Mahre, Andrew</creator><creator>Kurdzo, James M.</creator><creator>Bodine, David J.</creator><creator>Griffin, Casey B.</creator><creator>Palmer, Robert D.</creator><creator>Yu, Tian-You</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180701</creationdate><title>Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar</title><author>Mahre, Andrew ; Kurdzo, James M. ; Bodine, David J. ; Griffin, Casey B. ; Palmer, Robert D. ; Yu, Tian-You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Air</topic><topic>Amplification</topic><topic>Data</topic><topic>Debris</topic><topic>Detritus</topic><topic>Doppler effect</topic><topic>Echoes</topic><topic>Evolution</topic><topic>Fallout</topic><topic>Height</topic><topic>Hydrometeors</topic><topic>Imaging radar</topic><topic>Imaging techniques</topic><topic>Kinematics</topic><topic>Lofting</topic><topic>Measuring instruments</topic><topic>Medical imaging</topic><topic>Meteorology</topic><topic>Oscillations</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Reflectance</topic><topic>Research centers</topic><topic>Resolution</topic><topic>Skewed distributions</topic><topic>Studies</topic><topic>Tornadoes</topic><topic>Vortices</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahre, Andrew</creatorcontrib><creatorcontrib>Kurdzo, James M.</creatorcontrib><creatorcontrib>Bodine, David J.</creatorcontrib><creatorcontrib>Griffin, Casey B.</creatorcontrib><creatorcontrib>Palmer, Robert D.</creatorcontrib><creatorcontrib>Yu, Tian-You</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahre, Andrew</au><au>Kurdzo, James M.</au><au>Bodine, David J.</au><au>Griffin, Casey B.</au><au>Palmer, Robert D.</au><au>Yu, Tian-You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar</atitle><jtitle>Monthly weather review</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>146</volume><issue>7</issue><spage>2103</spage><epage>2124</epage><pages>2103-2124</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, and a ground-based velocity track display (GBVTD) analysis. This study is novel in that it uses high-resolution mobile radar data (update time of 6–7 s) in tandem with polarimetric data from KFDR in order to identify possible areas of debris, including a debris ring contained within the outer vortex circulation. Leveraging the high spatiotemporal resolution of the AIR with the polarimetric capability of KFDR leads to analysis of reflectivity distributions, debris lofting, kinematic changes, and oscillations in tornado intensity during a portion of the mature stage of the tornado, with a particular focus on the relationship between changes in the reflectivity field and dynamical changes around the tornado. Debris is lofted in a high-reflectivity concentric ring of increasing radius and height around the tornado over several minutes, within the outer weak-echo hole (WEH). Simultaneously, debris lofting and asymmetric reflectivity distribution around the WEH coincide with changes in vortex tilt on multiple occasions. In one instance, hydrometeor fallout appears to precede a possible descending reflectivity core. Using the GBVTD results, near-surface convergence intensifies at the same time and location as when the debris ring is lofted. Additionally, strengthening of the tornado via multiple modes of vertical evolution (i.e., bottom-up intensification over time vs simultaneous intensification throughout the lowest few hundred meters) is observed.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-17-0256.1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2018-07, Vol.146 (7), p.2103-2124
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_journals_2117947971
source Free E-Journal (出版社公開部分のみ)
subjects Aerodynamics
Air
Amplification
Data
Debris
Detritus
Doppler effect
Echoes
Evolution
Fallout
Height
Hydrometeors
Imaging radar
Imaging techniques
Kinematics
Lofting
Measuring instruments
Medical imaging
Meteorology
Oscillations
Radar
Radar data
Radar imaging
Radar polarimetry
Reflectance
Research centers
Resolution
Skewed distributions
Studies
Tornadoes
Vortices
Wind
title Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%2016%20May%202015%20Tipton,%20Oklahoma,%20EF-3%20Tornado%20at%20High%20Spatiotemporal%20Resolution%20Using%20the%20Atmospheric%20Imaging%20Radar&rft.jtitle=Monthly%20weather%20review&rft.au=Mahre,%20Andrew&rft.date=2018-07-01&rft.volume=146&rft.issue=7&rft.spage=2103&rft.epage=2124&rft.pages=2103-2124&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-17-0256.1&rft_dat=%3Cproquest_cross%3E2117947971%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117947971&rft_id=info:pmid/&rfr_iscdi=true