Loading…
Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar
In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, an...
Saved in:
Published in: | Monthly weather review 2018-07, Vol.146 (7), p.2103-2124 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3 |
container_end_page | 2124 |
container_issue | 7 |
container_start_page | 2103 |
container_title | Monthly weather review |
container_volume | 146 |
creator | Mahre, Andrew Kurdzo, James M. Bodine, David J. Griffin, Casey B. Palmer, Robert D. Yu, Tian-You |
description | In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, and a ground-based velocity track display (GBVTD) analysis. This study is novel in that it uses high-resolution mobile radar data (update time of 6–7 s) in tandem with polarimetric data from KFDR in order to identify possible areas of debris, including a debris ring contained within the outer vortex circulation. Leveraging the high spatiotemporal resolution of the AIR with the polarimetric capability of KFDR leads to analysis of reflectivity distributions, debris lofting, kinematic changes, and oscillations in tornado intensity during a portion of the mature stage of the tornado, with a particular focus on the relationship between changes in the reflectivity field and dynamical changes around the tornado. Debris is lofted in a high-reflectivity concentric ring of increasing radius and height around the tornado over several minutes, within the outer weak-echo hole (WEH). Simultaneously, debris lofting and asymmetric reflectivity distribution around the WEH coincide with changes in vortex tilt on multiple occasions. In one instance, hydrometeor fallout appears to precede a possible descending reflectivity core. Using the GBVTD results, near-surface convergence intensifies at the same time and location as when the debris ring is lofted. Additionally, strengthening of the tornado via multiple modes of vertical evolution (i.e., bottom-up intensification over time vs simultaneous intensification throughout the lowest few hundred meters) is observed. |
doi_str_mv | 10.1175/MWR-D-17-0256.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117947971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117947971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3</originalsourceid><addsrcrecordid>eNotkD1vwjAYhK2qlUpp566WuhLw69gJGREfBQmEREEdrTeJQ0KTOLXDwNaf3lA6nXR3OukeQl6BDQFCOdp87ryZB6HHuAyGcEd6IDnzmIj8e9JjjHdJIMQjeXLuxBgLAsF75GdSY3lxhaMmo22uKQR0gxfKGUi6L5rW1AO6_SoxNxUO6Hzh-XRvbI2podjSZXHM6UeDbWFaXTXGYkl32pny3Dk1PbiiPv7NTtrKuCbXtkjoqsLj1d9hivaZPGRYOv3yr31yWMz306W33r6vppO1l_jAWs-HQMYyZjEIPwh5AgJklvgykhyTRIQwDqUMNCKk2ThGLnScZWMRpYKjzhj6ffJ2222s-T5r16qTOXc_Sqd4xy8SYRRC1xrdWok1zlmdqcYWFdqLAqaumFWHWc0UhOqKWYH_C0_Wbxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117947971</pqid></control><display><type>article</type><title>Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Mahre, Andrew ; Kurdzo, James M. ; Bodine, David J. ; Griffin, Casey B. ; Palmer, Robert D. ; Yu, Tian-You</creator><creatorcontrib>Mahre, Andrew ; Kurdzo, James M. ; Bodine, David J. ; Griffin, Casey B. ; Palmer, Robert D. ; Yu, Tian-You</creatorcontrib><description>In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, and a ground-based velocity track display (GBVTD) analysis. This study is novel in that it uses high-resolution mobile radar data (update time of 6–7 s) in tandem with polarimetric data from KFDR in order to identify possible areas of debris, including a debris ring contained within the outer vortex circulation. Leveraging the high spatiotemporal resolution of the AIR with the polarimetric capability of KFDR leads to analysis of reflectivity distributions, debris lofting, kinematic changes, and oscillations in tornado intensity during a portion of the mature stage of the tornado, with a particular focus on the relationship between changes in the reflectivity field and dynamical changes around the tornado. Debris is lofted in a high-reflectivity concentric ring of increasing radius and height around the tornado over several minutes, within the outer weak-echo hole (WEH). Simultaneously, debris lofting and asymmetric reflectivity distribution around the WEH coincide with changes in vortex tilt on multiple occasions. In one instance, hydrometeor fallout appears to precede a possible descending reflectivity core. Using the GBVTD results, near-surface convergence intensifies at the same time and location as when the debris ring is lofted. Additionally, strengthening of the tornado via multiple modes of vertical evolution (i.e., bottom-up intensification over time vs simultaneous intensification throughout the lowest few hundred meters) is observed.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-17-0256.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Aerodynamics ; Air ; Amplification ; Data ; Debris ; Detritus ; Doppler effect ; Echoes ; Evolution ; Fallout ; Height ; Hydrometeors ; Imaging radar ; Imaging techniques ; Kinematics ; Lofting ; Measuring instruments ; Medical imaging ; Meteorology ; Oscillations ; Radar ; Radar data ; Radar imaging ; Radar polarimetry ; Reflectance ; Research centers ; Resolution ; Skewed distributions ; Studies ; Tornadoes ; Vortices ; Wind</subject><ispartof>Monthly weather review, 2018-07, Vol.146 (7), p.2103-2124</ispartof><rights>Copyright American Meteorological Society Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3</citedby><cites>FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahre, Andrew</creatorcontrib><creatorcontrib>Kurdzo, James M.</creatorcontrib><creatorcontrib>Bodine, David J.</creatorcontrib><creatorcontrib>Griffin, Casey B.</creatorcontrib><creatorcontrib>Palmer, Robert D.</creatorcontrib><creatorcontrib>Yu, Tian-You</creatorcontrib><title>Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar</title><title>Monthly weather review</title><description>In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, and a ground-based velocity track display (GBVTD) analysis. This study is novel in that it uses high-resolution mobile radar data (update time of 6–7 s) in tandem with polarimetric data from KFDR in order to identify possible areas of debris, including a debris ring contained within the outer vortex circulation. Leveraging the high spatiotemporal resolution of the AIR with the polarimetric capability of KFDR leads to analysis of reflectivity distributions, debris lofting, kinematic changes, and oscillations in tornado intensity during a portion of the mature stage of the tornado, with a particular focus on the relationship between changes in the reflectivity field and dynamical changes around the tornado. Debris is lofted in a high-reflectivity concentric ring of increasing radius and height around the tornado over several minutes, within the outer weak-echo hole (WEH). Simultaneously, debris lofting and asymmetric reflectivity distribution around the WEH coincide with changes in vortex tilt on multiple occasions. In one instance, hydrometeor fallout appears to precede a possible descending reflectivity core. Using the GBVTD results, near-surface convergence intensifies at the same time and location as when the debris ring is lofted. Additionally, strengthening of the tornado via multiple modes of vertical evolution (i.e., bottom-up intensification over time vs simultaneous intensification throughout the lowest few hundred meters) is observed.</description><subject>Aerodynamics</subject><subject>Air</subject><subject>Amplification</subject><subject>Data</subject><subject>Debris</subject><subject>Detritus</subject><subject>Doppler effect</subject><subject>Echoes</subject><subject>Evolution</subject><subject>Fallout</subject><subject>Height</subject><subject>Hydrometeors</subject><subject>Imaging radar</subject><subject>Imaging techniques</subject><subject>Kinematics</subject><subject>Lofting</subject><subject>Measuring instruments</subject><subject>Medical imaging</subject><subject>Meteorology</subject><subject>Oscillations</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Reflectance</subject><subject>Research centers</subject><subject>Resolution</subject><subject>Skewed distributions</subject><subject>Studies</subject><subject>Tornadoes</subject><subject>Vortices</subject><subject>Wind</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkD1vwjAYhK2qlUpp566WuhLw69gJGREfBQmEREEdrTeJQ0KTOLXDwNaf3lA6nXR3OukeQl6BDQFCOdp87ryZB6HHuAyGcEd6IDnzmIj8e9JjjHdJIMQjeXLuxBgLAsF75GdSY3lxhaMmo22uKQR0gxfKGUi6L5rW1AO6_SoxNxUO6Hzh-XRvbI2podjSZXHM6UeDbWFaXTXGYkl32pny3Dk1PbiiPv7NTtrKuCbXtkjoqsLj1d9hivaZPGRYOv3yr31yWMz306W33r6vppO1l_jAWs-HQMYyZjEIPwh5AgJklvgykhyTRIQwDqUMNCKk2ThGLnScZWMRpYKjzhj6ffJ2222s-T5r16qTOXc_Sqd4xy8SYRRC1xrdWok1zlmdqcYWFdqLAqaumFWHWc0UhOqKWYH_C0_Wbxg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Mahre, Andrew</creator><creator>Kurdzo, James M.</creator><creator>Bodine, David J.</creator><creator>Griffin, Casey B.</creator><creator>Palmer, Robert D.</creator><creator>Yu, Tian-You</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180701</creationdate><title>Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar</title><author>Mahre, Andrew ; Kurdzo, James M. ; Bodine, David J. ; Griffin, Casey B. ; Palmer, Robert D. ; Yu, Tian-You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Air</topic><topic>Amplification</topic><topic>Data</topic><topic>Debris</topic><topic>Detritus</topic><topic>Doppler effect</topic><topic>Echoes</topic><topic>Evolution</topic><topic>Fallout</topic><topic>Height</topic><topic>Hydrometeors</topic><topic>Imaging radar</topic><topic>Imaging techniques</topic><topic>Kinematics</topic><topic>Lofting</topic><topic>Measuring instruments</topic><topic>Medical imaging</topic><topic>Meteorology</topic><topic>Oscillations</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Reflectance</topic><topic>Research centers</topic><topic>Resolution</topic><topic>Skewed distributions</topic><topic>Studies</topic><topic>Tornadoes</topic><topic>Vortices</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahre, Andrew</creatorcontrib><creatorcontrib>Kurdzo, James M.</creatorcontrib><creatorcontrib>Bodine, David J.</creatorcontrib><creatorcontrib>Griffin, Casey B.</creatorcontrib><creatorcontrib>Palmer, Robert D.</creatorcontrib><creatorcontrib>Yu, Tian-You</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahre, Andrew</au><au>Kurdzo, James M.</au><au>Bodine, David J.</au><au>Griffin, Casey B.</au><au>Palmer, Robert D.</au><au>Yu, Tian-You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar</atitle><jtitle>Monthly weather review</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>146</volume><issue>7</issue><spage>2103</spage><epage>2124</epage><pages>2103-2124</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, and a ground-based velocity track display (GBVTD) analysis. This study is novel in that it uses high-resolution mobile radar data (update time of 6–7 s) in tandem with polarimetric data from KFDR in order to identify possible areas of debris, including a debris ring contained within the outer vortex circulation. Leveraging the high spatiotemporal resolution of the AIR with the polarimetric capability of KFDR leads to analysis of reflectivity distributions, debris lofting, kinematic changes, and oscillations in tornado intensity during a portion of the mature stage of the tornado, with a particular focus on the relationship between changes in the reflectivity field and dynamical changes around the tornado. Debris is lofted in a high-reflectivity concentric ring of increasing radius and height around the tornado over several minutes, within the outer weak-echo hole (WEH). Simultaneously, debris lofting and asymmetric reflectivity distribution around the WEH coincide with changes in vortex tilt on multiple occasions. In one instance, hydrometeor fallout appears to precede a possible descending reflectivity core. Using the GBVTD results, near-surface convergence intensifies at the same time and location as when the debris ring is lofted. Additionally, strengthening of the tornado via multiple modes of vertical evolution (i.e., bottom-up intensification over time vs simultaneous intensification throughout the lowest few hundred meters) is observed.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-17-0256.1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2018-07, Vol.146 (7), p.2103-2124 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_proquest_journals_2117947971 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | Aerodynamics Air Amplification Data Debris Detritus Doppler effect Echoes Evolution Fallout Height Hydrometeors Imaging radar Imaging techniques Kinematics Lofting Measuring instruments Medical imaging Meteorology Oscillations Radar Radar data Radar imaging Radar polarimetry Reflectance Research centers Resolution Skewed distributions Studies Tornadoes Vortices Wind |
title | Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%2016%20May%202015%20Tipton,%20Oklahoma,%20EF-3%20Tornado%20at%20High%20Spatiotemporal%20Resolution%20Using%20the%20Atmospheric%20Imaging%20Radar&rft.jtitle=Monthly%20weather%20review&rft.au=Mahre,%20Andrew&rft.date=2018-07-01&rft.volume=146&rft.issue=7&rft.spage=2103&rft.epage=2124&rft.pages=2103-2124&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-17-0256.1&rft_dat=%3Cproquest_cross%3E2117947971%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-3165b5b0b143672c1415fc35952acc47187556eaa1df8ba24ebff849d42aef0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117947971&rft_id=info:pmid/&rfr_iscdi=true |