Loading…
Thermodynamics of Pyrocumulus: A Conceptual Study
In favorable atmospheric conditions, fires can produce pyrocumulonimbus cloud (pyroCb) in the form of deep convective columns resembling conventional thunderstorms, which may be accompanied by strong inflow, dangerous downbursts, and lightning strikes that can produce dangerous changes in fire behav...
Saved in:
Published in: | Monthly weather review 2018-08, Vol.146 (8), p.2579-2598 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In favorable atmospheric conditions, fires can produce pyrocumulonimbus cloud (pyroCb) in the form of deep convective columns resembling conventional thunderstorms, which may be accompanied by strong inflow, dangerous downbursts, and lightning strikes that can produce dangerous changes in fire behavior. PyroCb formation conditions are not well understood and are difficult to forecast. This paper presents a theoretical study of the thermodynamics of fire plumes to better understand the influence of a range of factors on plume condensation. Plume gases are considered to be undiluted at the fire source and approach 100% dilution at the plume top (neutral buoyancy). Plume condensation height changes are considered for this full range of dilution and for a given set of factors that include environmental temperature and humidity, fire temperature, and fire-moisture-to-heat ratios. The condensation heights are calculated and plotted as saturation point (SP) curves on thermodynamic diagrams. The position and slope of the SP curves provide insight into how plume condensation is affected by the environment thermodynamics and ratios of fire heat to moisture production. Plume temperature traces from large-eddy model simulations added to the diagrams provide additional insight into plume condensation heights and plume buoyancy at condensation. SP curves added to a mixed layer lifting condensation level on standard thermodynamic diagrams can be used to identify the minimum plume condensation height and buoyancy required for deep, moist, free convection to develop, which will aid pyroCb prediction. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/MWR-D-17-0377.1 |