Loading…

Impacts of the Boreal Spring Indo-Pacific Warm Pool Hadley Circulation on Tropical Cyclone Activity over the Western North Pacific

This study investigated the impacts of the interannual variability in the boreal spring regional Hadley circulation over the Indo-Pacific warm pool (IPWP) on the tropical cyclone (TC) activity over the western North Pacific (WNP). The principal modes of the interannual variability in the IPWP Hadley...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2018-02, Vol.31 (4), p.1361-1375
Main Authors: Guo, Yi-Peng, Tan, Zhe-Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigated the impacts of the interannual variability in the boreal spring regional Hadley circulation over the Indo-Pacific warm pool (IPWP) on the tropical cyclone (TC) activity over the western North Pacific (WNP). The principal modes of the interannual variability in the IPWP Hadley circulation were calculated using empirical orthogonal function (EOF) analysis. The leading mode (EOF-1) features cross-equatorial southerly wind anomalies over the Indian Ocean and Maritime Continent and has an evident impact on WNP TC activity during summer. In the summer following a positive phase of the EOF-1, a cyclonic circulation anomaly, with upward motion, positive relative vorticity anomalies, and weak sea level pressure, dominates the WNP, and this favors increased TC genesis. However, large positive vertical wind shear anomalies over the South China Sea and Philippine Sea inhibit the TC intensification. A positive wind–sea surface temperature (SST)–precipitation feedback was found to facilitate the ability of the signal of the EOF-1 to persist until the summer. The westerly wind anomalies converge around 110°N over the WNP, thus increasing precipitation, and this increased precipitation enhances the westerly wind anomalies via a Gill-type response. The strengthened westerly wind anomalies increase total wind speeds, which in turn cool the SST in the Bay of Bengal and the South China Sea, and warm the SST in the eastern WNP, increasing the zonal SST gradient. Consequently, this increased zonal SST gradient further enhances the westerly wind anomalies, strengthens the monsoon trough, and increases the WNP precipitation further. Therefore, the WNP precipitation anomalies are sustained into the summer.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-17-0422.1