Loading…

The Next-Generation Goddard Convective–Stratiform Heating Algorithm: New Tropical and Warm-Season Retrievals for GPM

The Goddard convective–stratiform heating (CSH) algorithm, used to estimate cloud heating in support of the Tropical Rainfall Measuring Mission (TRMM), is upgraded in support of the Global Precipitation Measurement (GPM) mission. The algorithm’s lookup tables (LUTs) are revised using new and additio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2018-08, Vol.31 (15), p.5997-6026
Main Authors: Lang, Stephen E., Tao, Wei-Kuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Goddard convective–stratiform heating (CSH) algorithm, used to estimate cloud heating in support of the Tropical Rainfall Measuring Mission (TRMM), is upgraded in support of the Global Precipitation Measurement (GPM) mission. The algorithm’s lookup tables (LUTs) are revised using new and additional cloud-resolving model (CRM) simulations from the Goddard Cumulus Ensemble (GCE) model, producing smoother heating patterns that span a wider range of intensities because of the increased sampling and finer GPM product grid. Low-level stratiform cooling rates are reduced in the land LUTs for a given rain intensity because of the rain evaporation correction in the new four-class ice (4ICE) scheme. Additional criteria, namely, echo-top heights and low-level reflectivity gradients, are tested for the selection of heating profiles. Those resulting LUTs show greater and more precise variation in their depth of heating as well as a tendency for stronger cooling and heating rates when low-level dBZ values decrease toward the surface. Comparisons versus TRMM for a 3-month period show much more low-level heating in the GPM retrievals because of increased detection of shallow convection, while upper-level heating patterns remain similar. The use of echo tops and low-level reflectivity gradients greatly reduces midlevel heating from ~2 to 5 km in the mean GPM heating profile, resulting in a more top-heavy profile like TRMM versus a more bottom-heavy profile with much more midlevel heating. Integrated latent heating rates are much better balanced versus surface rainfall for the GPM retrievals using the additional selection criteria with an overall bias of +4.3%.
ISSN:0894-8755
1520-0442
DOI:10.1175/jcli-d-17-0224.1