Loading…

Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection

We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society Series C: Applied Statistics 2018-11, Vol.67 (5), p.1237-1273
Main Authors: Rajala, T., Murrell, D. J., Olhede, S. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493
cites cdi_FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493
container_end_page 1273
container_issue 5
container_start_page 1237
container_title Journal of the Royal Statistical Society Series C: Applied Statistics
container_volume 67
creator Rajala, T.
Murrell, D. J.
Olhede, S. C.
description We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model to characterize point-to-point interactions at different spatial scales directly. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approximation, and we select significant interactions automatically by using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species.
doi_str_mv 10.1111/rssc.12281
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2118110713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26800594</jstor_id><sourcerecordid>26800594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493</originalsourceid><addsrcrecordid>eNp9UM9LwzAUDqLgnF68CwFvQmdekrbJUaZOQRCcnkPSpZrRtTXJHPvvzVb16Ls8Xr4fL-9D6BzIBFJd-xCqCVAq4ACNgBdlJkVZHKIRISzPJM35MToJYUlSAeEjVN_aaKvo2ne8WjfRfWnvdLTYtdF6nYCuDWnAodfR6Qb3XUJwGhKckI2LH3jmjAl41S1sE7BuF3hvYhqLg23s3uMUHdW6Cfbsp4_R2_3d6_Qhe3qePU5vnrKK5RIyyVhhclrUZQmEiIIsdGElLY1NryI3kgDntJaMiornlBlhaFmVRNQi3cMlG6PLwbf33efahqiW3dq3aaWiAAKAlMAS62pgVb4Lwdta9d6ttN8qIGqXo9rlqPY5JjIM5I1r7PYfpnqZz6e_motBswyx838aWqRv5pKzby0CfwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118110713</pqid></control><display><type>article</type><title>Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Rajala, T. ; Murrell, D. J. ; Olhede, S. C.</creator><creatorcontrib>Rajala, T. ; Murrell, D. J. ; Olhede, S. C.</creatorcontrib><description>We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model to characterize point-to-point interactions at different spatial scales directly. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approximation, and we select significant interactions automatically by using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/rssc.12281</identifier><language>eng</language><publisher>Oxford: Wiley</publisher><subject>Approximation ; Barro Colorado Island ; Computer simulation ; Feasibility ; Feasibility studies ; Gibbs models ; Mathematical analysis ; Multivariate point patterns ; Power ; Rainforests ; Simulation ; Species interaction ; Variable selection</subject><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2018-11, Vol.67 (5), p.1237-1273</ispartof><rights>2018 The Authors</rights><rights>2018 The Authors Journal of the Royal Statistical Society: Series C (Applied Statistics) Published by John Wiley &amp; Sons Ltd on behalf of the Royal Statistical Society.</rights><rights>Copyright © 2018 The Royal Statistical Society and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493</citedby><cites>FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26800594$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26800594$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,33202,58216,58449</link.rule.ids></links><search><creatorcontrib>Rajala, T.</creatorcontrib><creatorcontrib>Murrell, D. J.</creatorcontrib><creatorcontrib>Olhede, S. C.</creatorcontrib><title>Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><description>We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model to characterize point-to-point interactions at different spatial scales directly. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approximation, and we select significant interactions automatically by using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species.</description><subject>Approximation</subject><subject>Barro Colorado Island</subject><subject>Computer simulation</subject><subject>Feasibility</subject><subject>Feasibility studies</subject><subject>Gibbs models</subject><subject>Mathematical analysis</subject><subject>Multivariate point patterns</subject><subject>Power</subject><subject>Rainforests</subject><subject>Simulation</subject><subject>Species interaction</subject><subject>Variable selection</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>8BJ</sourceid><recordid>eNp9UM9LwzAUDqLgnF68CwFvQmdekrbJUaZOQRCcnkPSpZrRtTXJHPvvzVb16Ls8Xr4fL-9D6BzIBFJd-xCqCVAq4ACNgBdlJkVZHKIRISzPJM35MToJYUlSAeEjVN_aaKvo2ne8WjfRfWnvdLTYtdF6nYCuDWnAodfR6Qb3XUJwGhKckI2LH3jmjAl41S1sE7BuF3hvYhqLg23s3uMUHdW6Cfbsp4_R2_3d6_Qhe3qePU5vnrKK5RIyyVhhclrUZQmEiIIsdGElLY1NryI3kgDntJaMiornlBlhaFmVRNQi3cMlG6PLwbf33efahqiW3dq3aaWiAAKAlMAS62pgVb4Lwdta9d6ttN8qIGqXo9rlqPY5JjIM5I1r7PYfpnqZz6e_motBswyx838aWqRv5pKzby0CfwA</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Rajala, T.</creator><creator>Murrell, D. J.</creator><creator>Olhede, S. C.</creator><general>Wiley</general><general>Oxford University Press</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201811</creationdate><title>Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection</title><author>Rajala, T. ; Murrell, D. J. ; Olhede, S. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Barro Colorado Island</topic><topic>Computer simulation</topic><topic>Feasibility</topic><topic>Feasibility studies</topic><topic>Gibbs models</topic><topic>Mathematical analysis</topic><topic>Multivariate point patterns</topic><topic>Power</topic><topic>Rainforests</topic><topic>Simulation</topic><topic>Species interaction</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajala, T.</creatorcontrib><creatorcontrib>Murrell, D. J.</creatorcontrib><creatorcontrib>Olhede, S. C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajala, T.</au><au>Murrell, D. J.</au><au>Olhede, S. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><date>2018-11</date><risdate>2018</risdate><volume>67</volume><issue>5</issue><spage>1237</spage><epage>1273</epage><pages>1237-1273</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model to characterize point-to-point interactions at different spatial scales directly. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approximation, and we select significant interactions automatically by using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species.</abstract><cop>Oxford</cop><pub>Wiley</pub><doi>10.1111/rssc.12281</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Journal of the Royal Statistical Society Series C: Applied Statistics, 2018-11, Vol.67 (5), p.1237-1273
issn 0035-9254
1467-9876
language eng
recordid cdi_proquest_journals_2118110713
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; JSTOR Archival Journals and Primary Sources Collection
subjects Approximation
Barro Colorado Island
Computer simulation
Feasibility
Feasibility studies
Gibbs models
Mathematical analysis
Multivariate point patterns
Power
Rainforests
Simulation
Species interaction
Variable selection
title Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20multivariate%20interactions%20in%20spatial%20point%20patterns%20with%20Gibbs%20models%20and%20variable%20selection&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Rajala,%20T.&rft.date=2018-11&rft.volume=67&rft.issue=5&rft.spage=1237&rft.epage=1273&rft.pages=1237-1273&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1111/rssc.12281&rft_dat=%3Cjstor_proqu%3E26800594%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2118110713&rft_id=info:pmid/&rft_jstor_id=26800594&rfr_iscdi=true