Loading…
Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection
We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model t...
Saved in:
Published in: | Journal of the Royal Statistical Society Series C: Applied Statistics 2018-11, Vol.67 (5), p.1237-1273 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493 |
---|---|
cites | cdi_FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493 |
container_end_page | 1273 |
container_issue | 5 |
container_start_page | 1237 |
container_title | Journal of the Royal Statistical Society Series C: Applied Statistics |
container_volume | 67 |
creator | Rajala, T. Murrell, D. J. Olhede, S. C. |
description | We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model to characterize point-to-point interactions at different spatial scales directly. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approximation, and we select significant interactions automatically by using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species. |
doi_str_mv | 10.1111/rssc.12281 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2118110713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26800594</jstor_id><sourcerecordid>26800594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493</originalsourceid><addsrcrecordid>eNp9UM9LwzAUDqLgnF68CwFvQmdekrbJUaZOQRCcnkPSpZrRtTXJHPvvzVb16Ls8Xr4fL-9D6BzIBFJd-xCqCVAq4ACNgBdlJkVZHKIRISzPJM35MToJYUlSAeEjVN_aaKvo2ne8WjfRfWnvdLTYtdF6nYCuDWnAodfR6Qb3XUJwGhKckI2LH3jmjAl41S1sE7BuF3hvYhqLg23s3uMUHdW6Cfbsp4_R2_3d6_Qhe3qePU5vnrKK5RIyyVhhclrUZQmEiIIsdGElLY1NryI3kgDntJaMiornlBlhaFmVRNQi3cMlG6PLwbf33efahqiW3dq3aaWiAAKAlMAS62pgVb4Lwdta9d6ttN8qIGqXo9rlqPY5JjIM5I1r7PYfpnqZz6e_motBswyx838aWqRv5pKzby0CfwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118110713</pqid></control><display><type>article</type><title>Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Rajala, T. ; Murrell, D. J. ; Olhede, S. C.</creator><creatorcontrib>Rajala, T. ; Murrell, D. J. ; Olhede, S. C.</creatorcontrib><description>We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model to characterize point-to-point interactions at different spatial scales directly. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approximation, and we select significant interactions automatically by using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/rssc.12281</identifier><language>eng</language><publisher>Oxford: Wiley</publisher><subject>Approximation ; Barro Colorado Island ; Computer simulation ; Feasibility ; Feasibility studies ; Gibbs models ; Mathematical analysis ; Multivariate point patterns ; Power ; Rainforests ; Simulation ; Species interaction ; Variable selection</subject><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2018-11, Vol.67 (5), p.1237-1273</ispartof><rights>2018 The Authors</rights><rights>2018 The Authors Journal of the Royal Statistical Society: Series C (Applied Statistics) Published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society.</rights><rights>Copyright © 2018 The Royal Statistical Society and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493</citedby><cites>FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26800594$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26800594$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,33202,58216,58449</link.rule.ids></links><search><creatorcontrib>Rajala, T.</creatorcontrib><creatorcontrib>Murrell, D. J.</creatorcontrib><creatorcontrib>Olhede, S. C.</creatorcontrib><title>Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><description>We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model to characterize point-to-point interactions at different spatial scales directly. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approximation, and we select significant interactions automatically by using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species.</description><subject>Approximation</subject><subject>Barro Colorado Island</subject><subject>Computer simulation</subject><subject>Feasibility</subject><subject>Feasibility studies</subject><subject>Gibbs models</subject><subject>Mathematical analysis</subject><subject>Multivariate point patterns</subject><subject>Power</subject><subject>Rainforests</subject><subject>Simulation</subject><subject>Species interaction</subject><subject>Variable selection</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>8BJ</sourceid><recordid>eNp9UM9LwzAUDqLgnF68CwFvQmdekrbJUaZOQRCcnkPSpZrRtTXJHPvvzVb16Ls8Xr4fL-9D6BzIBFJd-xCqCVAq4ACNgBdlJkVZHKIRISzPJM35MToJYUlSAeEjVN_aaKvo2ne8WjfRfWnvdLTYtdF6nYCuDWnAodfR6Qb3XUJwGhKckI2LH3jmjAl41S1sE7BuF3hvYhqLg23s3uMUHdW6Cfbsp4_R2_3d6_Qhe3qePU5vnrKK5RIyyVhhclrUZQmEiIIsdGElLY1NryI3kgDntJaMiornlBlhaFmVRNQi3cMlG6PLwbf33efahqiW3dq3aaWiAAKAlMAS62pgVb4Lwdta9d6ttN8qIGqXo9rlqPY5JjIM5I1r7PYfpnqZz6e_motBswyx838aWqRv5pKzby0CfwA</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Rajala, T.</creator><creator>Murrell, D. J.</creator><creator>Olhede, S. C.</creator><general>Wiley</general><general>Oxford University Press</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201811</creationdate><title>Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection</title><author>Rajala, T. ; Murrell, D. J. ; Olhede, S. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Barro Colorado Island</topic><topic>Computer simulation</topic><topic>Feasibility</topic><topic>Feasibility studies</topic><topic>Gibbs models</topic><topic>Mathematical analysis</topic><topic>Multivariate point patterns</topic><topic>Power</topic><topic>Rainforests</topic><topic>Simulation</topic><topic>Species interaction</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajala, T.</creatorcontrib><creatorcontrib>Murrell, D. J.</creatorcontrib><creatorcontrib>Olhede, S. C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajala, T.</au><au>Murrell, D. J.</au><au>Olhede, S. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><date>2018-11</date><risdate>2018</risdate><volume>67</volume><issue>5</issue><spage>1237</spage><epage>1273</epage><pages>1237-1273</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model to characterize point-to-point interactions at different spatial scales directly. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approximation, and we select significant interactions automatically by using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species.</abstract><cop>Oxford</cop><pub>Wiley</pub><doi>10.1111/rssc.12281</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9254 |
ispartof | Journal of the Royal Statistical Society Series C: Applied Statistics, 2018-11, Vol.67 (5), p.1237-1273 |
issn | 0035-9254 1467-9876 |
language | eng |
recordid | cdi_proquest_journals_2118110713 |
source | International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; JSTOR Archival Journals and Primary Sources Collection |
subjects | Approximation Barro Colorado Island Computer simulation Feasibility Feasibility studies Gibbs models Mathematical analysis Multivariate point patterns Power Rainforests Simulation Species interaction Variable selection |
title | Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20multivariate%20interactions%20in%20spatial%20point%20patterns%20with%20Gibbs%20models%20and%20variable%20selection&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Rajala,%20T.&rft.date=2018-11&rft.volume=67&rft.issue=5&rft.spage=1237&rft.epage=1273&rft.pages=1237-1273&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1111/rssc.12281&rft_dat=%3Cjstor_proqu%3E26800594%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3591-9336b526f77100860da6e927beb5285b901442f9328c4523b8b27c708f8001493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2118110713&rft_id=info:pmid/&rft_jstor_id=26800594&rfr_iscdi=true |