Loading…
Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD
In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu 2 Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of i...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2018-12, Vol.29 (24), p.20623-20628 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3 |
container_end_page | 20628 |
container_issue | 24 |
container_start_page | 20623 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 29 |
creator | Ochoa-Estrella, F. J. Vera-Marquina, A. Mejia, I. Leal-Cruz, A. L. Pintor-Monroy, M. I. Quevedo-López, M. |
description | In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu
2
Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap = 2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3 × 10
13
cm
−3
and a resistivity of 1.64 × 10
5
Ω∙cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8 × 10
15
to 1.26 × 10
19
cm
−3
) as function of Cu concentration and a decreasing resistivity (from 7.01 × 103 to 2.6 × 10
−1
Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors. |
doi_str_mv | 10.1007/s10854-018-0200-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118629792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118629792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcBt1Zv0qRN3cn4xAEFRxA3IZOHdui0NUkX8-9NqeDK1b0Xzjn38CF0SuCCAJSXgYDgLAMiMqAAGeyhGeFlnjFB3_fRDCpeZoxTeoiOQtgAQMFyMUNPr9EPOg5eNee462Otx0W1BtvG6ujHG_e-662PtQ24c_ijXdmrxYDjV91iVzfbgNc7_LK8OUYHTjXBnvzOOXq7u10tHrLl8_3j4nqZ6ZwUMSMVLZ0tjCo5S-00qyA3uTOaAFfK0UoTzoVhuWGWs7U1TqhSOGZZYWw68zk6m3JTr-_Bhig33eDb9FJSQkRBq7KiSUUmlfZdCN462ft6q_xOEpAjMzkxk4mZHJlJSB46eULStp_W_yX_b_oB4-xuSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118629792</pqid></control><display><type>article</type><title>Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD</title><source>Springer Nature</source><creator>Ochoa-Estrella, F. J. ; Vera-Marquina, A. ; Mejia, I. ; Leal-Cruz, A. L. ; Pintor-Monroy, M. I. ; Quevedo-López, M.</creator><creatorcontrib>Ochoa-Estrella, F. J. ; Vera-Marquina, A. ; Mejia, I. ; Leal-Cruz, A. L. ; Pintor-Monroy, M. I. ; Quevedo-López, M.</creatorcontrib><description>In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu
2
Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap = 2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3 × 10
13
cm
−3
and a resistivity of 1.64 × 10
5
Ω∙cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8 × 10
15
to 1.26 × 10
19
cm
−3
) as function of Cu concentration and a decreasing resistivity (from 7.01 × 103 to 2.6 × 10
−1
Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-0200-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrical properties ; Electrical resistivity ; Electromagnetism ; Electronic devices ; Energy gap ; Hall effect ; Materials Science ; Optical and Electronic Materials ; Optical properties ; P-type semiconductors ; Photovoltaic cells ; Pulsed laser deposition ; Pulsed lasers ; Solar cells ; Spectroscopy ; Spectrum analysis ; Thin films ; X-ray diffraction ; Zinc tellurides</subject><ispartof>Journal of materials science. Materials in electronics, 2018-12, Vol.29 (24), p.20623-20628</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3</citedby><cites>FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3</cites><orcidid>0000-0002-1267-0090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ochoa-Estrella, F. J.</creatorcontrib><creatorcontrib>Vera-Marquina, A.</creatorcontrib><creatorcontrib>Mejia, I.</creatorcontrib><creatorcontrib>Leal-Cruz, A. L.</creatorcontrib><creatorcontrib>Pintor-Monroy, M. I.</creatorcontrib><creatorcontrib>Quevedo-López, M.</creatorcontrib><title>Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu
2
Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap = 2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3 × 10
13
cm
−3
and a resistivity of 1.64 × 10
5
Ω∙cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8 × 10
15
to 1.26 × 10
19
cm
−3
) as function of Cu concentration and a decreasing resistivity (from 7.01 × 103 to 2.6 × 10
−1
Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors.</description><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electromagnetism</subject><subject>Electronic devices</subject><subject>Energy gap</subject><subject>Hall effect</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>P-type semiconductors</subject><subject>Photovoltaic cells</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>Solar cells</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><subject>Zinc tellurides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcBt1Zv0qRN3cn4xAEFRxA3IZOHdui0NUkX8-9NqeDK1b0Xzjn38CF0SuCCAJSXgYDgLAMiMqAAGeyhGeFlnjFB3_fRDCpeZoxTeoiOQtgAQMFyMUNPr9EPOg5eNee462Otx0W1BtvG6ujHG_e-662PtQ24c_ijXdmrxYDjV91iVzfbgNc7_LK8OUYHTjXBnvzOOXq7u10tHrLl8_3j4nqZ6ZwUMSMVLZ0tjCo5S-00qyA3uTOaAFfK0UoTzoVhuWGWs7U1TqhSOGZZYWw68zk6m3JTr-_Bhig33eDb9FJSQkRBq7KiSUUmlfZdCN462ft6q_xOEpAjMzkxk4mZHJlJSB46eULStp_W_yX_b_oB4-xuSQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ochoa-Estrella, F. J.</creator><creator>Vera-Marquina, A.</creator><creator>Mejia, I.</creator><creator>Leal-Cruz, A. L.</creator><creator>Pintor-Monroy, M. I.</creator><creator>Quevedo-López, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1267-0090</orcidid></search><sort><creationdate>20181201</creationdate><title>Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD</title><author>Ochoa-Estrella, F. J. ; Vera-Marquina, A. ; Mejia, I. ; Leal-Cruz, A. L. ; Pintor-Monroy, M. I. ; Quevedo-López, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electromagnetism</topic><topic>Electronic devices</topic><topic>Energy gap</topic><topic>Hall effect</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>P-type semiconductors</topic><topic>Photovoltaic cells</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>Solar cells</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><topic>Zinc tellurides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochoa-Estrella, F. J.</creatorcontrib><creatorcontrib>Vera-Marquina, A.</creatorcontrib><creatorcontrib>Mejia, I.</creatorcontrib><creatorcontrib>Leal-Cruz, A. L.</creatorcontrib><creatorcontrib>Pintor-Monroy, M. I.</creatorcontrib><creatorcontrib>Quevedo-López, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochoa-Estrella, F. J.</au><au>Vera-Marquina, A.</au><au>Mejia, I.</au><au>Leal-Cruz, A. L.</au><au>Pintor-Monroy, M. I.</au><au>Quevedo-López, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>29</volume><issue>24</issue><spage>20623</spage><epage>20628</epage><pages>20623-20628</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu
2
Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap = 2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3 × 10
13
cm
−3
and a resistivity of 1.64 × 10
5
Ω∙cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8 × 10
15
to 1.26 × 10
19
cm
−3
) as function of Cu concentration and a decreasing resistivity (from 7.01 × 103 to 2.6 × 10
−1
Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-0200-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1267-0090</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2018-12, Vol.29 (24), p.20623-20628 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2118629792 |
source | Springer Nature |
subjects | Carrier density Characterization and Evaluation of Materials Chemistry and Materials Science Electrical properties Electrical resistivity Electromagnetism Electronic devices Energy gap Hall effect Materials Science Optical and Electronic Materials Optical properties P-type semiconductors Photovoltaic cells Pulsed laser deposition Pulsed lasers Solar cells Spectroscopy Spectrum analysis Thin films X-ray diffraction Zinc tellurides |
title | Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20optical,%20and%20electrical%20properties%20of%20ZnTe:Cu%20thin%20films%20by%20PLD&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ochoa-Estrella,%20F.%20J.&rft.date=2018-12-01&rft.volume=29&rft.issue=24&rft.spage=20623&rft.epage=20628&rft.pages=20623-20628&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-0200-0&rft_dat=%3Cproquest_cross%3E2118629792%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2118629792&rft_id=info:pmid/&rfr_iscdi=true |