Loading…

Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD

In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu 2 Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2018-12, Vol.29 (24), p.20623-20628
Main Authors: Ochoa-Estrella, F. J., Vera-Marquina, A., Mejia, I., Leal-Cruz, A. L., Pintor-Monroy, M. I., Quevedo-López, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3
cites cdi_FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3
container_end_page 20628
container_issue 24
container_start_page 20623
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Ochoa-Estrella, F. J.
Vera-Marquina, A.
Mejia, I.
Leal-Cruz, A. L.
Pintor-Monroy, M. I.
Quevedo-López, M.
description In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu 2 Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap = 2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3 × 10 13 cm −3 and a resistivity of 1.64 × 10 5 Ω∙cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8 × 10 15 to 1.26 × 10 19  cm −3 ) as function of Cu concentration and a decreasing resistivity (from 7.01 × 103 to 2.6 × 10 −1  Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors.
doi_str_mv 10.1007/s10854-018-0200-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2118629792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118629792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcBt1Zv0qRN3cn4xAEFRxA3IZOHdui0NUkX8-9NqeDK1b0Xzjn38CF0SuCCAJSXgYDgLAMiMqAAGeyhGeFlnjFB3_fRDCpeZoxTeoiOQtgAQMFyMUNPr9EPOg5eNee462Otx0W1BtvG6ujHG_e-662PtQ24c_ijXdmrxYDjV91iVzfbgNc7_LK8OUYHTjXBnvzOOXq7u10tHrLl8_3j4nqZ6ZwUMSMVLZ0tjCo5S-00qyA3uTOaAFfK0UoTzoVhuWGWs7U1TqhSOGZZYWw68zk6m3JTr-_Bhig33eDb9FJSQkRBq7KiSUUmlfZdCN462ft6q_xOEpAjMzkxk4mZHJlJSB46eULStp_W_yX_b_oB4-xuSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118629792</pqid></control><display><type>article</type><title>Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD</title><source>Springer Nature</source><creator>Ochoa-Estrella, F. J. ; Vera-Marquina, A. ; Mejia, I. ; Leal-Cruz, A. L. ; Pintor-Monroy, M. I. ; Quevedo-López, M.</creator><creatorcontrib>Ochoa-Estrella, F. J. ; Vera-Marquina, A. ; Mejia, I. ; Leal-Cruz, A. L. ; Pintor-Monroy, M. I. ; Quevedo-López, M.</creatorcontrib><description>In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu 2 Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap = 2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3 × 10 13 cm −3 and a resistivity of 1.64 × 10 5 Ω∙cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8 × 10 15 to 1.26 × 10 19  cm −3 ) as function of Cu concentration and a decreasing resistivity (from 7.01 × 103 to 2.6 × 10 −1  Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-0200-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrical properties ; Electrical resistivity ; Electromagnetism ; Electronic devices ; Energy gap ; Hall effect ; Materials Science ; Optical and Electronic Materials ; Optical properties ; P-type semiconductors ; Photovoltaic cells ; Pulsed laser deposition ; Pulsed lasers ; Solar cells ; Spectroscopy ; Spectrum analysis ; Thin films ; X-ray diffraction ; Zinc tellurides</subject><ispartof>Journal of materials science. Materials in electronics, 2018-12, Vol.29 (24), p.20623-20628</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3</citedby><cites>FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3</cites><orcidid>0000-0002-1267-0090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ochoa-Estrella, F. J.</creatorcontrib><creatorcontrib>Vera-Marquina, A.</creatorcontrib><creatorcontrib>Mejia, I.</creatorcontrib><creatorcontrib>Leal-Cruz, A. L.</creatorcontrib><creatorcontrib>Pintor-Monroy, M. I.</creatorcontrib><creatorcontrib>Quevedo-López, M.</creatorcontrib><title>Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu 2 Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap = 2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3 × 10 13 cm −3 and a resistivity of 1.64 × 10 5 Ω∙cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8 × 10 15 to 1.26 × 10 19  cm −3 ) as function of Cu concentration and a decreasing resistivity (from 7.01 × 103 to 2.6 × 10 −1  Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors.</description><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electromagnetism</subject><subject>Electronic devices</subject><subject>Energy gap</subject><subject>Hall effect</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>P-type semiconductors</subject><subject>Photovoltaic cells</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>Solar cells</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><subject>Zinc tellurides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcBt1Zv0qRN3cn4xAEFRxA3IZOHdui0NUkX8-9NqeDK1b0Xzjn38CF0SuCCAJSXgYDgLAMiMqAAGeyhGeFlnjFB3_fRDCpeZoxTeoiOQtgAQMFyMUNPr9EPOg5eNee462Otx0W1BtvG6ujHG_e-662PtQ24c_ijXdmrxYDjV91iVzfbgNc7_LK8OUYHTjXBnvzOOXq7u10tHrLl8_3j4nqZ6ZwUMSMVLZ0tjCo5S-00qyA3uTOaAFfK0UoTzoVhuWGWs7U1TqhSOGZZYWw68zk6m3JTr-_Bhig33eDb9FJSQkRBq7KiSUUmlfZdCN462ft6q_xOEpAjMzkxk4mZHJlJSB46eULStp_W_yX_b_oB4-xuSQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ochoa-Estrella, F. J.</creator><creator>Vera-Marquina, A.</creator><creator>Mejia, I.</creator><creator>Leal-Cruz, A. L.</creator><creator>Pintor-Monroy, M. I.</creator><creator>Quevedo-López, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1267-0090</orcidid></search><sort><creationdate>20181201</creationdate><title>Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD</title><author>Ochoa-Estrella, F. J. ; Vera-Marquina, A. ; Mejia, I. ; Leal-Cruz, A. L. ; Pintor-Monroy, M. I. ; Quevedo-López, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electromagnetism</topic><topic>Electronic devices</topic><topic>Energy gap</topic><topic>Hall effect</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>P-type semiconductors</topic><topic>Photovoltaic cells</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>Solar cells</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><topic>Zinc tellurides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochoa-Estrella, F. J.</creatorcontrib><creatorcontrib>Vera-Marquina, A.</creatorcontrib><creatorcontrib>Mejia, I.</creatorcontrib><creatorcontrib>Leal-Cruz, A. L.</creatorcontrib><creatorcontrib>Pintor-Monroy, M. I.</creatorcontrib><creatorcontrib>Quevedo-López, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochoa-Estrella, F. J.</au><au>Vera-Marquina, A.</au><au>Mejia, I.</au><au>Leal-Cruz, A. L.</au><au>Pintor-Monroy, M. I.</au><au>Quevedo-López, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>29</volume><issue>24</issue><spage>20623</spage><epage>20628</epage><pages>20623-20628</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu 2 Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap = 2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3 × 10 13 cm −3 and a resistivity of 1.64 × 10 5 Ω∙cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8 × 10 15 to 1.26 × 10 19  cm −3 ) as function of Cu concentration and a decreasing resistivity (from 7.01 × 103 to 2.6 × 10 −1  Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-0200-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1267-0090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-12, Vol.29 (24), p.20623-20628
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2118629792
source Springer Nature
subjects Carrier density
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electrical properties
Electrical resistivity
Electromagnetism
Electronic devices
Energy gap
Hall effect
Materials Science
Optical and Electronic Materials
Optical properties
P-type semiconductors
Photovoltaic cells
Pulsed laser deposition
Pulsed lasers
Solar cells
Spectroscopy
Spectrum analysis
Thin films
X-ray diffraction
Zinc tellurides
title Structural, optical, and electrical properties of ZnTe:Cu thin films by PLD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20optical,%20and%20electrical%20properties%20of%20ZnTe:Cu%20thin%20films%20by%20PLD&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ochoa-Estrella,%20F.%20J.&rft.date=2018-12-01&rft.volume=29&rft.issue=24&rft.spage=20623&rft.epage=20628&rft.pages=20623-20628&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-0200-0&rft_dat=%3Cproquest_cross%3E2118629792%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1927fe6da754482c4903d3fdc105aaf29c1558d43d4e54bedf8a78f4e46debed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2118629792&rft_id=info:pmid/&rfr_iscdi=true