Loading…

On controller design for systems on manifolds in Euclidean space

Summary A new method is developed to design controllers in Euclidean space for systems defined on manifolds. The idea is to embed the state‐space manifold M of a given control system into some Euclidean space Rn, extend the system from M to the ambient space Rn, and modify it outside M to add transv...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control 2018-11, Vol.28 (16), p.4981-4998
Main Author: Chang, Dong Eui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3644-acab2e07b8df1945ca66369c92184aeefe9d6e32daec635b8cb4c50fe15db49f3
cites cdi_FETCH-LOGICAL-c3644-acab2e07b8df1945ca66369c92184aeefe9d6e32daec635b8cb4c50fe15db49f3
container_end_page 4998
container_issue 16
container_start_page 4981
container_title International journal of robust and nonlinear control
container_volume 28
creator Chang, Dong Eui
description Summary A new method is developed to design controllers in Euclidean space for systems defined on manifolds. The idea is to embed the state‐space manifold M of a given control system into some Euclidean space Rn, extend the system from M to the ambient space Rn, and modify it outside M to add transversal stability to M in the final dynamics in Rn. Controllers are designed for the final system in the ambient space Rn. Then, their restriction to M produces controllers for the original system on M. This method has the merit that only one single global Cartesian coordinate system in the ambient space Rn is used for controller synthesis, and any controller design method in Rn, such as the linearization method, can be globally applied for the controller synthesis. The proposed method is successfully applied to the tracking problem for the following two benchmark systems: the fully actuated rigid body system and the quadcopter drone system.
doi_str_mv 10.1002/rnc.4294
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2119864722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119864722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3644-acab2e07b8df1945ca66369c92184aeefe9d6e32daec635b8cb4c50fe15db49f3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxszdemm5uy1A8oFkTPIZtMZMs2qckusv_erfXqaQbm4R14EbqmZEEJYXcp2IVgSpygGSVKFZRxdXrYhSoqxfg5ush5S8h0Y2KG7jcB2xj6FLsOEnaQ28-AfUw4j7mHXcYx4J0JrY-dy7gNeDXYrnVgAs57Y-ESnXnTZbj6m3P08bh6r5-L9ebppX5YF5ZLIQpjTcOALJvKeapEaY2UXCqrGK2EAfCgnATOnAEredlUthG2JB5o6RqhPJ-jm2PuPsWvAXKvt3FIYXqpGaWqkmLJ2KRuj8qmmHMCr_ep3Zk0akr0oR899aMP_Uy0ONLvtoPxX6ffXutf_wPL02by</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119864722</pqid></control><display><type>article</type><title>On controller design for systems on manifolds in Euclidean space</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chang, Dong Eui</creator><creatorcontrib>Chang, Dong Eui</creatorcontrib><description>Summary A new method is developed to design controllers in Euclidean space for systems defined on manifolds. The idea is to embed the state‐space manifold M of a given control system into some Euclidean space Rn, extend the system from M to the ambient space Rn, and modify it outside M to add transversal stability to M in the final dynamics in Rn. Controllers are designed for the final system in the ambient space Rn. Then, their restriction to M produces controllers for the original system on M. This method has the merit that only one single global Cartesian coordinate system in the ambient space Rn is used for controller synthesis, and any controller design method in Rn, such as the linearization method, can be globally applied for the controller synthesis. The proposed method is successfully applied to the tracking problem for the following two benchmark systems: the fully actuated rigid body system and the quadcopter drone system.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4294</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Cartesian coordinates ; Control stability ; Control systems design ; Controllers ; Coordinates ; Design engineering ; drone ; Dynamic stability ; Embedded systems ; embedding ; Euclidean geometry ; Euclidean space ; manifold ; Manifolds ; quadcopter ; rigid body ; Rigid structures ; Synthesis ; tracking ; Tracking problem</subject><ispartof>International journal of robust and nonlinear control, 2018-11, Vol.28 (16), p.4981-4998</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3644-acab2e07b8df1945ca66369c92184aeefe9d6e32daec635b8cb4c50fe15db49f3</citedby><cites>FETCH-LOGICAL-c3644-acab2e07b8df1945ca66369c92184aeefe9d6e32daec635b8cb4c50fe15db49f3</cites><orcidid>0000-0002-6496-4189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Dong Eui</creatorcontrib><title>On controller design for systems on manifolds in Euclidean space</title><title>International journal of robust and nonlinear control</title><description>Summary A new method is developed to design controllers in Euclidean space for systems defined on manifolds. The idea is to embed the state‐space manifold M of a given control system into some Euclidean space Rn, extend the system from M to the ambient space Rn, and modify it outside M to add transversal stability to M in the final dynamics in Rn. Controllers are designed for the final system in the ambient space Rn. Then, their restriction to M produces controllers for the original system on M. This method has the merit that only one single global Cartesian coordinate system in the ambient space Rn is used for controller synthesis, and any controller design method in Rn, such as the linearization method, can be globally applied for the controller synthesis. The proposed method is successfully applied to the tracking problem for the following two benchmark systems: the fully actuated rigid body system and the quadcopter drone system.</description><subject>Cartesian coordinates</subject><subject>Control stability</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Coordinates</subject><subject>Design engineering</subject><subject>drone</subject><subject>Dynamic stability</subject><subject>Embedded systems</subject><subject>embedding</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>manifold</subject><subject>Manifolds</subject><subject>quadcopter</subject><subject>rigid body</subject><subject>Rigid structures</subject><subject>Synthesis</subject><subject>tracking</subject><subject>Tracking problem</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxszdemm5uy1A8oFkTPIZtMZMs2qckusv_erfXqaQbm4R14EbqmZEEJYXcp2IVgSpygGSVKFZRxdXrYhSoqxfg5ush5S8h0Y2KG7jcB2xj6FLsOEnaQ28-AfUw4j7mHXcYx4J0JrY-dy7gNeDXYrnVgAs57Y-ESnXnTZbj6m3P08bh6r5-L9ebppX5YF5ZLIQpjTcOALJvKeapEaY2UXCqrGK2EAfCgnATOnAEredlUthG2JB5o6RqhPJ-jm2PuPsWvAXKvt3FIYXqpGaWqkmLJ2KRuj8qmmHMCr_ep3Zk0akr0oR899aMP_Uy0ONLvtoPxX6ffXutf_wPL02by</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Chang, Dong Eui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6496-4189</orcidid></search><sort><creationdate>20181110</creationdate><title>On controller design for systems on manifolds in Euclidean space</title><author>Chang, Dong Eui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3644-acab2e07b8df1945ca66369c92184aeefe9d6e32daec635b8cb4c50fe15db49f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cartesian coordinates</topic><topic>Control stability</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Coordinates</topic><topic>Design engineering</topic><topic>drone</topic><topic>Dynamic stability</topic><topic>Embedded systems</topic><topic>embedding</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>manifold</topic><topic>Manifolds</topic><topic>quadcopter</topic><topic>rigid body</topic><topic>Rigid structures</topic><topic>Synthesis</topic><topic>tracking</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Dong Eui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Dong Eui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On controller design for systems on manifolds in Euclidean space</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2018-11-10</date><risdate>2018</risdate><volume>28</volume><issue>16</issue><spage>4981</spage><epage>4998</epage><pages>4981-4998</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary A new method is developed to design controllers in Euclidean space for systems defined on manifolds. The idea is to embed the state‐space manifold M of a given control system into some Euclidean space Rn, extend the system from M to the ambient space Rn, and modify it outside M to add transversal stability to M in the final dynamics in Rn. Controllers are designed for the final system in the ambient space Rn. Then, their restriction to M produces controllers for the original system on M. This method has the merit that only one single global Cartesian coordinate system in the ambient space Rn is used for controller synthesis, and any controller design method in Rn, such as the linearization method, can be globally applied for the controller synthesis. The proposed method is successfully applied to the tracking problem for the following two benchmark systems: the fully actuated rigid body system and the quadcopter drone system.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4294</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6496-4189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2018-11, Vol.28 (16), p.4981-4998
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2119864722
source Wiley-Blackwell Read & Publish Collection
subjects Cartesian coordinates
Control stability
Control systems design
Controllers
Coordinates
Design engineering
drone
Dynamic stability
Embedded systems
embedding
Euclidean geometry
Euclidean space
manifold
Manifolds
quadcopter
rigid body
Rigid structures
Synthesis
tracking
Tracking problem
title On controller design for systems on manifolds in Euclidean space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20controller%20design%20for%20systems%20on%20manifolds%20in%20Euclidean%20space&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Chang,%20Dong%20Eui&rft.date=2018-11-10&rft.volume=28&rft.issue=16&rft.spage=4981&rft.epage=4998&rft.pages=4981-4998&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4294&rft_dat=%3Cproquest_cross%3E2119864722%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3644-acab2e07b8df1945ca66369c92184aeefe9d6e32daec635b8cb4c50fe15db49f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2119864722&rft_id=info:pmid/&rfr_iscdi=true