Loading…

Global concurrent cross-scale nonlinear analysis approach of complex CFRD systems considering dynamic impervious panel-rockfill material-foundation interactions

Evaluating the seismic security of enormous structures is extremely vital, and this concern has continually motivated the trends of refined numerical simulations for years. However, the ability to perform a concurrent global refinement analysis of large-scale projects with complex spatial geometries...

Full description

Saved in:
Bibliographic Details
Published in:Soil dynamics and earthquake engineering (1984) 2018-11, Vol.114, p.51-68
Main Authors: Chen, Kai, Zou, Degao, Kong, Xianjing, Zhou, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evaluating the seismic security of enormous structures is extremely vital, and this concern has continually motivated the trends of refined numerical simulations for years. However, the ability to perform a concurrent global refinement analysis of large-scale projects with complex spatial geometries and spanning huge scales has remained a formidable challenge in settings such as high concrete-faced rockfill dams. In this paper, a global concurrent cross-scale nonlinear analysis approach (GCCNA) benefitting from an efficient hybrid octree-based discretization technique is presented. Significantly, a polygon interface is constructed to automatically connect the cross-scale element and solve the interactions between the concrete-faced rockfill and foundation. A viscoelasticity polygonal artificial boundary element is subsequently developed to render the influence of radiation damping on an infinite foundation so that the travelling wave effect on the dynamic response and stabilization can be captured. A high-efficiency and economically time-consuming solution strategy is adopted, wherein the scaled boundary finite element is introduced to manage the minority polyhedrons in the generated octree model, and the numerous hexahedrons are assigned to the isoparametric element. The features of rapid discretization, high flexibility, extraordinary grid reconstruction and coupling with the conventional finite element are contained perfectly, which are demonstrated via the comprehensive elasto-plastic dynamic simulation of an extremely complicated practical constructed highest rockfill dam. The proposed approach has attractive potential and practicability for the efficient refinement analysis of complicated enormous engineering structures and can be readily extended to subterranean structures, nuclear plants, and architectural and aviation structures. •A Global Concurrent Cross-scale Nonlinear Analysis approach (GCCNA) is presented.•Concurrently meticulous mesh is generated automatically fastly for mega projects.•Versatile polygon interface and viscoelasticity artificial boundary are explored.•High efficiency and economic time-consuming SBPFE-FEM solution strategy.
ISSN:0267-7261
1879-341X
DOI:10.1016/j.soildyn.2018.06.027