Loading…
Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit
A bstract We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same p...
Saved in:
Published in: | The journal of high energy physics 2018-10, Vol.2018 (10), p.1-68 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3 |
---|---|
cites | |
container_end_page | 68 |
container_issue | 10 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2018 |
creator | Cavaglià, Andrea Gromov, Nikolay Levkovich-Maslyuk, Fedor |
description | A
bstract
We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same plane with arbitrary angles in the ladders limit. This provides strong evidence that the Quantum Spectral Curve is not only a highly efficient tool for finding the anomalous dimensions but also encodes correlation functions with all wrapping corrections taken into account to all orders in the ‘t Hooft coupling. We also show how to study the insertions of scalars coupled to the Wilson lines and extend our results for the spectrum and the structure constants to this case. We discuss an OPE expansion of two cusps in terms of these states. Our results give additional support to the Separation of Variables strategy in solving the planar
N
=
4
SYM theory. |
doi_str_mv | 10.1007/JHEP10(2018)060 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2120151780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120151780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3</originalsourceid><addsrcrecordid>eNpF0EtLAzEQwPEgCNbH2WvAix5WJ8kmuxE8SKlWqS-sB09Lmszqlu12zcPP79YKngLDjxnyJ-SYwTkDKC7up5NnBqccWHkGCnbIiAHXWZkXeo_sh7AEYJJpGJH5SzJdTCsaerTRm5ba5L-Rms7REH2yMXmkdt2FOLhAm44-XuX09f3hcpCh_53ET6StcQ49bZtVEw_Jbm3agEd_7wF5u5nMx9Ns9nR7N76eZZYXEDOm0FmnZa2EknohZCkEQ2ucQIccJVfC1hpRcWMHtchVmWtpsNbS5bxw4oCcbPf2fv2VMMRquU6-G05WnPHNF4sSBgVbFXrfdB_o_xWDatOr2vaqNr2qoZf4AVlEX6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120151780</pqid></control><display><type>article</type><title>Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</creator><creatorcontrib>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</creatorcontrib><description>A
bstract
We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same plane with arbitrary angles in the ladders limit. This provides strong evidence that the Quantum Spectral Curve is not only a highly efficient tool for finding the anomalous dimensions but also encodes correlation functions with all wrapping corrections taken into account to all orders in the ‘t Hooft coupling. We also show how to study the insertions of scalars coupled to the Wilson lines and extend our results for the spectrum and the structure constants to this case. We discuss an OPE expansion of two cusps in terms of these states. Our results give additional support to the Separation of Variables strategy in solving the planar
N
=
4
SYM theory.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2018)060</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Constants ; Cusps ; Elementary Particles ; High energy physics ; Ladders ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Scalars ; Spectra ; String Theory</subject><ispartof>The journal of high energy physics, 2018-10, Vol.2018 (10), p.1-68</ispartof><rights>The Author(s) 2018</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2120151780/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2120151780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Levkovich-Maslyuk, Fedor</creatorcontrib><title>Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same plane with arbitrary angles in the ladders limit. This provides strong evidence that the Quantum Spectral Curve is not only a highly efficient tool for finding the anomalous dimensions but also encodes correlation functions with all wrapping corrections taken into account to all orders in the ‘t Hooft coupling. We also show how to study the insertions of scalars coupled to the Wilson lines and extend our results for the spectrum and the structure constants to this case. We discuss an OPE expansion of two cusps in terms of these states. Our results give additional support to the Separation of Variables strategy in solving the planar
N
=
4
SYM theory.</description><subject>Classical and Quantum Gravitation</subject><subject>Constants</subject><subject>Cusps</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Ladders</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>Spectra</subject><subject>String Theory</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpF0EtLAzEQwPEgCNbH2WvAix5WJ8kmuxE8SKlWqS-sB09Lmszqlu12zcPP79YKngLDjxnyJ-SYwTkDKC7up5NnBqccWHkGCnbIiAHXWZkXeo_sh7AEYJJpGJH5SzJdTCsaerTRm5ba5L-Rms7REH2yMXmkdt2FOLhAm44-XuX09f3hcpCh_53ET6StcQ49bZtVEw_Jbm3agEd_7wF5u5nMx9Ns9nR7N76eZZYXEDOm0FmnZa2EknohZCkEQ2ucQIccJVfC1hpRcWMHtchVmWtpsNbS5bxw4oCcbPf2fv2VMMRquU6-G05WnPHNF4sSBgVbFXrfdB_o_xWDatOr2vaqNr2qoZf4AVlEX6o</recordid><startdate>20181009</startdate><enddate>20181009</enddate><creator>Cavaglià, Andrea</creator><creator>Gromov, Nikolay</creator><creator>Levkovich-Maslyuk, Fedor</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181009</creationdate><title>Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit</title><author>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Constants</topic><topic>Cusps</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Ladders</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>Spectra</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Levkovich-Maslyuk, Fedor</creatorcontrib><collection>SpringerOpen</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavaglià, Andrea</au><au>Gromov, Nikolay</au><au>Levkovich-Maslyuk, Fedor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2018-10-09</date><risdate>2018</risdate><volume>2018</volume><issue>10</issue><spage>1</spage><epage>68</epage><pages>1-68</pages><eissn>1029-8479</eissn><abstract>A
bstract
We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same plane with arbitrary angles in the ladders limit. This provides strong evidence that the Quantum Spectral Curve is not only a highly efficient tool for finding the anomalous dimensions but also encodes correlation functions with all wrapping corrections taken into account to all orders in the ‘t Hooft coupling. We also show how to study the insertions of scalars coupled to the Wilson lines and extend our results for the spectrum and the structure constants to this case. We discuss an OPE expansion of two cusps in terms of these states. Our results give additional support to the Separation of Variables strategy in solving the planar
N
=
4
SYM theory.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP10(2018)060</doi><tpages>68</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2018-10, Vol.2018 (10), p.1-68 |
issn | 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2120151780 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Classical and Quantum Gravitation Constants Cusps Elementary Particles High energy physics Ladders Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Scalars Spectra String Theory |
title | Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20spectral%20curve%20and%20structure%20constants%20in%20N=4%20SYM:%20cusps%20in%20the%20ladder%20limit&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cavagli%C3%A0,%20Andrea&rft.date=2018-10-09&rft.volume=2018&rft.issue=10&rft.spage=1&rft.epage=68&rft.pages=1-68&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2018)060&rft_dat=%3Cproquest_sprin%3E2120151780%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2120151780&rft_id=info:pmid/&rfr_iscdi=true |