Loading…

Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit

A bstract We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same p...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2018-10, Vol.2018 (10), p.1-68
Main Authors: Cavaglià, Andrea, Gromov, Nikolay, Levkovich-Maslyuk, Fedor
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3
cites
container_end_page 68
container_issue 10
container_start_page 1
container_title The journal of high energy physics
container_volume 2018
creator Cavaglià, Andrea
Gromov, Nikolay
Levkovich-Maslyuk, Fedor
description A bstract We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same plane with arbitrary angles in the ladders limit. This provides strong evidence that the Quantum Spectral Curve is not only a highly efficient tool for finding the anomalous dimensions but also encodes correlation functions with all wrapping corrections taken into account to all orders in the ‘t Hooft coupling. We also show how to study the insertions of scalars coupled to the Wilson lines and extend our results for the spectrum and the structure constants to this case. We discuss an OPE expansion of two cusps in terms of these states. Our results give additional support to the Separation of Variables strategy in solving the planar N = 4 SYM theory.
doi_str_mv 10.1007/JHEP10(2018)060
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2120151780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120151780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3</originalsourceid><addsrcrecordid>eNpF0EtLAzEQwPEgCNbH2WvAix5WJ8kmuxE8SKlWqS-sB09Lmszqlu12zcPP79YKngLDjxnyJ-SYwTkDKC7up5NnBqccWHkGCnbIiAHXWZkXeo_sh7AEYJJpGJH5SzJdTCsaerTRm5ba5L-Rms7REH2yMXmkdt2FOLhAm44-XuX09f3hcpCh_53ET6StcQ49bZtVEw_Jbm3agEd_7wF5u5nMx9Ns9nR7N76eZZYXEDOm0FmnZa2EknohZCkEQ2ucQIccJVfC1hpRcWMHtchVmWtpsNbS5bxw4oCcbPf2fv2VMMRquU6-G05WnPHNF4sSBgVbFXrfdB_o_xWDatOr2vaqNr2qoZf4AVlEX6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120151780</pqid></control><display><type>article</type><title>Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</creator><creatorcontrib>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</creatorcontrib><description>A bstract We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same plane with arbitrary angles in the ladders limit. This provides strong evidence that the Quantum Spectral Curve is not only a highly efficient tool for finding the anomalous dimensions but also encodes correlation functions with all wrapping corrections taken into account to all orders in the ‘t Hooft coupling. We also show how to study the insertions of scalars coupled to the Wilson lines and extend our results for the spectrum and the structure constants to this case. We discuss an OPE expansion of two cusps in terms of these states. Our results give additional support to the Separation of Variables strategy in solving the planar N = 4 SYM theory.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2018)060</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Constants ; Cusps ; Elementary Particles ; High energy physics ; Ladders ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Scalars ; Spectra ; String Theory</subject><ispartof>The journal of high energy physics, 2018-10, Vol.2018 (10), p.1-68</ispartof><rights>The Author(s) 2018</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2120151780/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2120151780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Levkovich-Maslyuk, Fedor</creatorcontrib><title>Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same plane with arbitrary angles in the ladders limit. This provides strong evidence that the Quantum Spectral Curve is not only a highly efficient tool for finding the anomalous dimensions but also encodes correlation functions with all wrapping corrections taken into account to all orders in the ‘t Hooft coupling. We also show how to study the insertions of scalars coupled to the Wilson lines and extend our results for the spectrum and the structure constants to this case. We discuss an OPE expansion of two cusps in terms of these states. Our results give additional support to the Separation of Variables strategy in solving the planar N = 4 SYM theory.</description><subject>Classical and Quantum Gravitation</subject><subject>Constants</subject><subject>Cusps</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Ladders</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>Spectra</subject><subject>String Theory</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpF0EtLAzEQwPEgCNbH2WvAix5WJ8kmuxE8SKlWqS-sB09Lmszqlu12zcPP79YKngLDjxnyJ-SYwTkDKC7up5NnBqccWHkGCnbIiAHXWZkXeo_sh7AEYJJpGJH5SzJdTCsaerTRm5ba5L-Rms7REH2yMXmkdt2FOLhAm44-XuX09f3hcpCh_53ET6StcQ49bZtVEw_Jbm3agEd_7wF5u5nMx9Ns9nR7N76eZZYXEDOm0FmnZa2EknohZCkEQ2ucQIccJVfC1hpRcWMHtchVmWtpsNbS5bxw4oCcbPf2fv2VMMRquU6-G05WnPHNF4sSBgVbFXrfdB_o_xWDatOr2vaqNr2qoZf4AVlEX6o</recordid><startdate>20181009</startdate><enddate>20181009</enddate><creator>Cavaglià, Andrea</creator><creator>Gromov, Nikolay</creator><creator>Levkovich-Maslyuk, Fedor</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181009</creationdate><title>Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit</title><author>Cavaglià, Andrea ; Gromov, Nikolay ; Levkovich-Maslyuk, Fedor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Constants</topic><topic>Cusps</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Ladders</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>Spectra</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavaglià, Andrea</creatorcontrib><creatorcontrib>Gromov, Nikolay</creatorcontrib><creatorcontrib>Levkovich-Maslyuk, Fedor</creatorcontrib><collection>SpringerOpen</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavaglià, Andrea</au><au>Gromov, Nikolay</au><au>Levkovich-Maslyuk, Fedor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2018-10-09</date><risdate>2018</risdate><volume>2018</volume><issue>10</issue><spage>1</spage><epage>68</epage><pages>1-68</pages><eissn>1029-8479</eissn><abstract>A bstract We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same plane with arbitrary angles in the ladders limit. This provides strong evidence that the Quantum Spectral Curve is not only a highly efficient tool for finding the anomalous dimensions but also encodes correlation functions with all wrapping corrections taken into account to all orders in the ‘t Hooft coupling. We also show how to study the insertions of scalars coupled to the Wilson lines and extend our results for the spectrum and the structure constants to this case. We discuss an OPE expansion of two cusps in terms of these states. Our results give additional support to the Separation of Variables strategy in solving the planar N = 4 SYM theory.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP10(2018)060</doi><tpages>68</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1029-8479
ispartof The journal of high energy physics, 2018-10, Vol.2018 (10), p.1-68
issn 1029-8479
language eng
recordid cdi_proquest_journals_2120151780
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Classical and Quantum Gravitation
Constants
Cusps
Elementary Particles
High energy physics
Ladders
Mathematical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scalars
Spectra
String Theory
title Quantum spectral curve and structure constants in N=4 SYM: cusps in the ladder limit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20spectral%20curve%20and%20structure%20constants%20in%20N=4%20SYM:%20cusps%20in%20the%20ladder%20limit&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cavagli%C3%A0,%20Andrea&rft.date=2018-10-09&rft.volume=2018&rft.issue=10&rft.spage=1&rft.epage=68&rft.pages=1-68&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2018)060&rft_dat=%3Cproquest_sprin%3E2120151780%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-16edcd95f63659b358331ecad3ede2e5263cf9ee62ac95fb468495aef95d427d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2120151780&rft_id=info:pmid/&rfr_iscdi=true