Loading…

Time-optimal selective pulses of two uncoupled spin 1/2 particles

We investigate the time-optimal solution of the selective control of two uncoupled spin 1/2 particles. Using the Pontryagin Maximum Principle, we derive the global time-optimal pulses for two spins with different offsets. We show that the Pontryagin Hamiltonian can be written as a one-dimensional ef...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-10
Main Authors: L Van Damme, Ansel, Q, Glaser, S J, Sugny, D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator L Van Damme
Ansel, Q
Glaser, S J
Sugny, D
description We investigate the time-optimal solution of the selective control of two uncoupled spin 1/2 particles. Using the Pontryagin Maximum Principle, we derive the global time-optimal pulses for two spins with different offsets. We show that the Pontryagin Hamiltonian can be written as a one-dimensional effective Hamiltonian. The optimal fields can be expressed analytically in terms of elliptic integrals. The time-optimal control problem is solved for the selective inversion and excitation processes. A bifurcation in the structure of the control fields occurs for a specific offset threshold. In particular, we show that for small offsets, the optimal solution is the concatenation of regular and singular extremals.
doi_str_mv 10.48550/arxiv.1810.07134
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2121211378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121211378</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-dac82ba671bf0ffbdc7fd30421c83b57c4536a8dd696c35f9a8aa858927f8ce13</originalsourceid><addsrcrecordid>eNotjctqwzAUREWh0JDmA7oTdO1EurKs62UIfUEgG--DrAcoOJZqWWk_vy4tsxg4DGcIeeJsW6OUbKen73DbclwAU1zUd2QFQvAKa4AHssn5whiDRoGUYkX2Xbi6KqY5XPVAsxucmcPN0VSG7DKNns5fkZbRxJIGZ2lOYaR8BzTpaQ5mcPmR3Hu9jDf_vSbd60t3eK-Op7ePw_5YaQlYWW0Qet0o3nvmfW-N8lawGrhB0UtlaikajdY2bWOE9K1GrVFiC8qjcVysyfOfNk3xs7g8ny-xTOPyeAb-Gy4Uih_k20t9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121211378</pqid></control><display><type>article</type><title>Time-optimal selective pulses of two uncoupled spin 1/2 particles</title><source>Publicly Available Content (ProQuest)</source><creator>L Van Damme ; Ansel, Q ; Glaser, S J ; Sugny, D</creator><creatorcontrib>L Van Damme ; Ansel, Q ; Glaser, S J ; Sugny, D</creatorcontrib><description>We investigate the time-optimal solution of the selective control of two uncoupled spin 1/2 particles. Using the Pontryagin Maximum Principle, we derive the global time-optimal pulses for two spins with different offsets. We show that the Pontryagin Hamiltonian can be written as a one-dimensional effective Hamiltonian. The optimal fields can be expressed analytically in terms of elliptic integrals. The time-optimal control problem is solved for the selective inversion and excitation processes. A bifurcation in the structure of the control fields occurs for a specific offset threshold. In particular, we show that for small offsets, the optimal solution is the concatenation of regular and singular extremals.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1810.07134</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bifurcations ; Elliptic functions ; Maximum principle ; Offsets ; Optimal control ; Particle spin ; Time optimal control</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2121211378?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,27912,36999,44577</link.rule.ids></links><search><creatorcontrib>L Van Damme</creatorcontrib><creatorcontrib>Ansel, Q</creatorcontrib><creatorcontrib>Glaser, S J</creatorcontrib><creatorcontrib>Sugny, D</creatorcontrib><title>Time-optimal selective pulses of two uncoupled spin 1/2 particles</title><title>arXiv.org</title><description>We investigate the time-optimal solution of the selective control of two uncoupled spin 1/2 particles. Using the Pontryagin Maximum Principle, we derive the global time-optimal pulses for two spins with different offsets. We show that the Pontryagin Hamiltonian can be written as a one-dimensional effective Hamiltonian. The optimal fields can be expressed analytically in terms of elliptic integrals. The time-optimal control problem is solved for the selective inversion and excitation processes. A bifurcation in the structure of the control fields occurs for a specific offset threshold. In particular, we show that for small offsets, the optimal solution is the concatenation of regular and singular extremals.</description><subject>Bifurcations</subject><subject>Elliptic functions</subject><subject>Maximum principle</subject><subject>Offsets</subject><subject>Optimal control</subject><subject>Particle spin</subject><subject>Time optimal control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAUREWh0JDmA7oTdO1EurKs62UIfUEgG--DrAcoOJZqWWk_vy4tsxg4DGcIeeJsW6OUbKen73DbclwAU1zUd2QFQvAKa4AHssn5whiDRoGUYkX2Xbi6KqY5XPVAsxucmcPN0VSG7DKNns5fkZbRxJIGZ2lOYaR8BzTpaQ5mcPmR3Hu9jDf_vSbd60t3eK-Op7ePw_5YaQlYWW0Qet0o3nvmfW-N8lawGrhB0UtlaikajdY2bWOE9K1GrVFiC8qjcVysyfOfNk3xs7g8ny-xTOPyeAb-Gy4Uih_k20t9</recordid><startdate>20181016</startdate><enddate>20181016</enddate><creator>L Van Damme</creator><creator>Ansel, Q</creator><creator>Glaser, S J</creator><creator>Sugny, D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181016</creationdate><title>Time-optimal selective pulses of two uncoupled spin 1/2 particles</title><author>L Van Damme ; Ansel, Q ; Glaser, S J ; Sugny, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-dac82ba671bf0ffbdc7fd30421c83b57c4536a8dd696c35f9a8aa858927f8ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bifurcations</topic><topic>Elliptic functions</topic><topic>Maximum principle</topic><topic>Offsets</topic><topic>Optimal control</topic><topic>Particle spin</topic><topic>Time optimal control</topic><toplevel>online_resources</toplevel><creatorcontrib>L Van Damme</creatorcontrib><creatorcontrib>Ansel, Q</creatorcontrib><creatorcontrib>Glaser, S J</creatorcontrib><creatorcontrib>Sugny, D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>L Van Damme</au><au>Ansel, Q</au><au>Glaser, S J</au><au>Sugny, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-optimal selective pulses of two uncoupled spin 1/2 particles</atitle><jtitle>arXiv.org</jtitle><date>2018-10-16</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We investigate the time-optimal solution of the selective control of two uncoupled spin 1/2 particles. Using the Pontryagin Maximum Principle, we derive the global time-optimal pulses for two spins with different offsets. We show that the Pontryagin Hamiltonian can be written as a one-dimensional effective Hamiltonian. The optimal fields can be expressed analytically in terms of elliptic integrals. The time-optimal control problem is solved for the selective inversion and excitation processes. A bifurcation in the structure of the control fields occurs for a specific offset threshold. In particular, we show that for small offsets, the optimal solution is the concatenation of regular and singular extremals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1810.07134</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2121211378
source Publicly Available Content (ProQuest)
subjects Bifurcations
Elliptic functions
Maximum principle
Offsets
Optimal control
Particle spin
Time optimal control
title Time-optimal selective pulses of two uncoupled spin 1/2 particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-optimal%20selective%20pulses%20of%20two%20uncoupled%20spin%201/2%20particles&rft.jtitle=arXiv.org&rft.au=L%20Van%20Damme&rft.date=2018-10-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1810.07134&rft_dat=%3Cproquest%3E2121211378%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-dac82ba671bf0ffbdc7fd30421c83b57c4536a8dd696c35f9a8aa858927f8ce13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121211378&rft_id=info:pmid/&rfr_iscdi=true