Loading…
Nonlinear propagation of stress waves during high speed cutting
Stress waves induced by high speed cutting (HSC) were demonstrated visually, and the dependence of their nonlinear propagation characteristics on cutting speed was studied. The time-resolved photoelasticity imaging technique in the bright-field mode was used to observe stress waves in the workpiece,...
Saved in:
Published in: | Applied physics letters 2016-11, Vol.109 (19) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stress waves induced by high speed cutting (HSC) were demonstrated visually, and the dependence of their nonlinear propagation characteristics on cutting speed was studied. The time-resolved photoelasticity imaging technique in the bright-field mode was used to observe stress waves in the workpiece, and the obtained photoelastic images were evaluated semi-quantitatively. The experimental results were quantitatively reproduced via the lattice model, which helped explain our observations by analyzing the superposition of stress waves. According to the further simulation, we find that as the cutting speed increases, the stress intensity of the workpiece near the cutting tool is not in a linear enhancement process, with strong distortion of stress field under the superposition of different stress wave components. These help us have a deep understanding about the HSC mechanism under stress waves' effects. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4967514 |